1
|
New Psychoactive Substances: Major Groups, Laboratory Testing Challenges, Public Health Concerns, and Community-Based Solutions. J CHEM-NY 2023. [DOI: 10.1155/2023/5852315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Across communities worldwide, various new psychoactive substances (NPSs) continue to emerge, which worsens the challenges to global mental health, drug rules, and public health risks, as well as combats their usage. Specifically, the vast number of NPSs that are currently available, coupled with the rate at which new ones emerge worldwide, increasingly challenges both forensic and clinical testing strategies. The well-established NPS detection techniques include immunoassays, colorimetric tests, mass spectrometric techniques, chromatographic techniques, and hyphenated types. Nonetheless, mitigating drug abuse and NPS usage is achievable through extensive community-based initiatives, with increased focus on harm reduction. Clinically validated and reliable testing of NPS from human samples, along with community-driven solution, such as harm reduction, will be of great importance, especially in combating their prevalence and the use of other illicit synthetic substances. There is a need for continued literature synthesis to reiterate the importance of NPS, given the continuous emergence of illicit substances in the recent years. All these are discussed in this overview, as we performed another look into NPS, from differentiating the major groups and identifying with laboratory testing challenges to community-based initiatives.
Collapse
|
2
|
Kuropka P, Zawadzki M, Szpot P. A review of synthetic cathinones emerging in recent years (2019-2022). Forensic Toxicol 2023; 41:25-46. [PMID: 36124107 PMCID: PMC9476408 DOI: 10.1007/s11419-022-00639-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Purpose The emergence of novel psychoactive substances (NPS) has been being a continuous and evolving problem for more than a decade. Every year, dozens of new, previously unknown drugs appear on the illegal market, posing a significant threat to the health and lives of their users. Synthetic cathinones are one of the most numerous and widespread groups among NPS. The purpose of this work was to identify and summarize available data on newly emerging cathinones in very recent years. Methods Various online databases such as PubMed, Google Scholar, but also databases of government agencies including those involved in early warning systems, were used in search of reports on the identification of newly emerging synthetic cathinones. In addition, threads on various forums created by users of these drugs were searched for reports on the effects of these new substances. Results We have identified 29 synthetic cathinones that have been detected for the first time from early 2019 to mid-2022. We described their structures, known intoxication symptoms, detected concentrations in biological material in poisoning cases, as well as the countries and dates of their first appearance. Due to the lack of studies on the properties of the novel compounds, we compared data on the pharmacological profiles of the better-known synthetic cathinones with available information on the newly emerged ones. Some of these new agents already posed a threat, as the first cases of poisonings, including fatal ones, have been reported. Conclusions Most of the newly developed synthetic cathinones can be seen as analogs and replacements for once-popular compounds that have been declining in popularity as a result of legislative efforts. Although it appears that some of the newly emerging cathinones are not widely used, they may become more popular in the future and could become a significant threat to health and life. Therefore, it is important to continue developing early warning systems and identifying new compounds so that their widespread can be prevented.
Collapse
Affiliation(s)
- Patryk Kuropka
- Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Marcin Zawadzki
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Paweł Szpot
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| |
Collapse
|
3
|
Arylcyclohexylamine Derivatives: Pharmacokinetic, Pharmacodynamic, Clinical and Forensic Aspects. Int J Mol Sci 2022; 23:ijms232415574. [PMID: 36555217 PMCID: PMC9779550 DOI: 10.3390/ijms232415574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia, their recreational use is increasing. ACH derivatives have an antagonistic activity against the N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind). Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case reports on intoxication.
Collapse
|
4
|
Shafi A, Berry AJ, Sumnall H, Wood DM, Tracy DK. New psychoactive substances: a review and updates. Ther Adv Psychopharmacol 2020; 10:2045125320967197. [PMID: 33414905 PMCID: PMC7750892 DOI: 10.1177/2045125320967197] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/26/2020] [Indexed: 12/19/2022] Open
Abstract
New psychoactive substances (NPS) are a heterogeneous group of substances. They are associated with a number of health and social harms on an individual and societal level. NPS toxicity and dependence syndromes are recognised in primary care, emergency departments, psychiatric inpatient and community care settings. One pragmatic classification system is to divide NPS into one of four groups: synthetic stimulants, synthetic cannabinoids, synthetic hallucinogens and synthetic depressants (which include synthetic opioids and benzodiazepines). We review these four classes of NPS, including their chemical structures, mechanism of action, modes of use, intended intoxicant effects, and their associated physical and mental health harms. The current challenges faced by laboratory testing for NPS are also explored, in the context of the diverse range of NPS currently available, rate of production and emergence of new substances, the different formulations, and methods of acquisition and distribution.
Collapse
Affiliation(s)
- Abu Shafi
- East London Foundation Trust, London, UK
| | - Alex J. Berry
- Division of Psychiatry, University College London, UK
| | | | - David M. Wood
- Clinical Toxicology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Clinical Toxicology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Derek K. Tracy
- Consultant Psychiatrist, Oxleas NHS Foundation Trust, London, UK
- Department of Psychosis Studies, the Institute of Psychiatry, Psychology and Neuroscience, King’s College London, DeCrespigny Park, London, SE5 8AF, UK
| |
Collapse
|
7
|
Wallach J, Colestock T, Agramunt J, Claydon MDB, Dybek M, Filemban N, Chatha M, Halberstadt AL, Brandt SD, Lodge D, Bortolotto ZA, Adejare A. Pharmacological characterizations of the 'legal high' fluorolintane and isomers. Eur J Pharmacol 2019; 857:172427. [PMID: 31152702 DOI: 10.1016/j.ejphar.2019.172427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
Abstract
1,2-Diarylethylamines represent a class of molecules that have shown potential in the treatment of pain, epilepsy, neurodegenerative disease and depression. Examples include lefetamine, remacemide, and lanicemine. Recently, several 1,2-diarylethylamines including the dissociatives diphenidine, methoxphenidine and ephenidine as well as the opioid MT-45, have appeared as 'research chemicals' or 'legal highs'. Due to their recent emergence little is known about their pharmacology. One of these, 1-[1-(2-fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane, 2-F-DPPy), is available for purchase with purported dissociative effects intended to resemble phencyclidine (PCP) and ketamine. To better understand this emerging class, pharmacological investigations were undertaken for the first time on fluorolintane and its five aryl-fluorine-substituted isomers. In vitro binding studies revealed high affinity for N-methyl-D-aspartate (NMDA) receptors with fluorolintane (Ki = 87.92 nM) with lesser affinities for related compounds. Additional affinities were seen for all compounds at several sites including norepinephrine (NET), serotonin (SERT) and dopamine (DAT) transporters, and sigma receptors. Notably high affinities at DAT were observed, which were in most cases greater than NMDA receptor affinities. Additional functional and behavioral experiments show fluorolintane inhibited NMDA receptor-induced field excitatory postsynaptic potentials in rat hippocampal slices and inhibited long-term potentiation induced by theta-burst stimulation in rat hippocampal slices with potencies consistent with its NMDA receptor antagonism. Finally fluorolintane inhibited prepulse inhibition in rats, a measure of sensorimotor gating, with a median effective dose (ED50) of 13.3 mg/kg. These findings are consistent with anecdotal reports of dissociative effects of fluorolintane in humans.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Substance Use Disorders Institute, University of the Sciences, Philadelphia, PA, USA.
| | - Tristan Colestock
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Julià Agramunt
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Matt D B Claydon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Michael Dybek
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
| | - Nadine Filemban
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA
| | - Muhammad Chatha
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - David Lodge
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, USA; Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, USA
| |
Collapse
|