1
|
Adunphatcharaphon S, Elliott CT, Sooksimuang T, Charlermroj R, Petchkongkaew A, Karoonuthaisiri N. The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128706. [PMID: 35339833 DOI: 10.1016/j.jhazmat.2022.128706] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxins present serious threats not only for public health, but also for the economy and environment. The problems become more complex and serious due to co-contamination of multiple hazardous mycotoxins in commodities and environment. To mitigate against this issue, accurate, affordable, and rapid multiplex detection methods are required. This review presents an overview of emerging rapid immuno-based multiplex methods capable of detecting mycotoxins present in agricultural products and feed ingredients published within the past five years. The scientific principles, advantages, disadvantages, and assay performance of these rapid multiplex immunoassays, including lateral flow, fluorescence polarization, chemiluminescence, surface plasmon resonance, surface enhanced Raman scattering, electrochemical sensor, and nanoarray are discussed. From the recent literature landscape, it is predicted that the future trend of the detection methods for multiple mycotoxins will rely on the advance of various sensor technologies, a variety of enhancing and reporting signals based on nanomaterials, rapid and effective sample preparation, and capacity for quantitative analysis.
Collapse
Affiliation(s)
- Saowalak Adunphatcharaphon
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Christopher T Elliott
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Thanasat Sooksimuang
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Ratthaphol Charlermroj
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| | - Nitsara Karoonuthaisiri
- International Joint Research Center on Food Security, 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand; Institute for Global Food Security, Queen's University, Belfast, Biological Sciences Building, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
2
|
Saha P, Moitra P, Bhattacharjee U, Bhattacharya S. Selective pathological and intracellular detection of human serum albumin by photophysical and electrochemical techniques using a FRET-based molecular probe. Biosens Bioelectron 2022; 203:114007. [DOI: 10.1016/j.bios.2022.114007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
|
3
|
Wang LY, Niu YY, Zhao MY, Yu YM, Li YT, Wu ZY, Yan CW. Supramolecular self-assembly of amantadine hydrochloride with ferulic acid via dual optimization strategy establishes a precedent of synergistic antiviral drug-phenolic acid nutraceutical cocrystal. Analyst 2021; 146:3988-3999. [PMID: 34013306 DOI: 10.1039/d1an00478f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To display the capability of the phenolic acid nutraceutical ferulic acid (FLA) in optimizing the in vitro/in vivo properties of the antiviral drug amantadine hydrochloride (AMH) and achieve synergistically enhanced antiviral effects, thereby gaining some new insights into pharmaceutical cocrystals of antiviral drugs with phenolic acid nutraceuticals, a cocrystallization strategy of dual optimization was created. Based on this strategy, the first drug-phenolic acid nutraceutical cocrystal of AMH with FLA, namely AMH-FLA-H2O, was successfully assembled and completely characterized by employing single-crystal X-ray diffraction and other analytical techniques. The cocrystal was revealed to be composed of AMH, FLA, and water molecules in the ratio of 3 : 1 : 1.5, and charge-assisted hydrogen bonds containing chloride ions crucially maintained the crystal lattice together with water molecules. The in vitro/in vivo properties of the cocrystal were systematically evaluated via both theoretical and experimental methods, and the results indicate that the dissolubility of AMH is down-regulated by two-thirds in the cocrystal, resulting in its potential for sustained pharmacokinetic release and the elimination of the adverse effects of AMH. More importantly, the enhanced antiviral effects of the current cocrystal were proven against four viral strains, and the pharmaceutical synergy between AMH and FLA was realized with a combination index (CI) of less than 1. Thus, the present work provides a novel crystalline product with bright commercial prospect for the classical antiviral drug AMH and also establishes an avenue for the synergetic antiviral application of nutraceutical phenolic acids via the cocrystallization strategy of dual optimization.
Collapse
Affiliation(s)
- Ling-Yang Wang
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yuan-Yuan Niu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Ming-Yu Zhao
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science. Qingdao, Shandong, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China.
| |
Collapse
|
4
|
Wang L, Xing B, Wang H, Hu L, Kuang X, Liang H, Wu D, Wei Q. Electrochemiluminescence immunosensor based on the quenching effect of CuO@GO on m-CNNS for cTnI detection. Anal Biochem 2020; 612:114012. [PMID: 33189703 DOI: 10.1016/j.ab.2020.114012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
A sandwich-type electrochemiluminescence (ECL) immunosensor based on the resonance energy transfer (RET) was proposed for ultrasensitive detection of cardiac troponin I (cTnI). The RET behavior could be generated between graphite carbon nitride nanosheets (m-CNNS) as donor and copper oxide@graphene oxide (CuO@GO) as acceptor, achieving the quenching effect of CuO@GO on m-CNNS for cTnI detection. The m-CNNS synthesized by mechanical grinding of the graphite carbon nitride (CN) not only has better dispersion and higher specific surface area, but also has high luminous efficiency and stable chemical properties. Therefore, m-CNNS was used as the matrix material and luminophore. As the acceptor, CuO@GO prepared by in-situ chemical synthesis of CuO NPs onto GO sheets also has a high specific surface area, which could be used as a label of secondary antibody (Ab2). Under optimal conditions, cTnI could be determined within the linear range of 0.1 pg mL-1 to 100 ng mL-1 and had a low detection limit (0.028 pg mL-1, S/N = 3). Meanwhile, the prepared ECL immunosensor possessed great stability, specificity and reproducibility, providing a new method for detecting cTnI and other biomarkers.
Collapse
Affiliation(s)
- Luxiao Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Bin Xing
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lihua Hu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Huixin Liang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
5
|
N,N-dicarboxymethyl Perylene-diimide modified CeCoO 3: Enhanced peroxidase activity, synergetic catalytic mechanism and glutathione colorimetric sensing. Talanta 2020; 218:121142. [PMID: 32797899 DOI: 10.1016/j.talanta.2020.121142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023]
Abstract
N,N-dicarboxymethyl Perylene-diimide (PDI) modified CeCoO3 nanocomposites were prepared by a two-step method. After modification with PDI molecules, the obtained PDI-CeCoO3 nanocomposites were demonstrated to possess the heightened peroxidase-like activity, compared with that of pure CeCoO3 nanoparticles. In the presence of H2O2, the heightened peroxidase-like behaviors of PDI-CeCoO3 were evaluated by the oxidation of the colorless substrate 3,3,5,5-tetramethylbenzidine (TMB) into blue oxTMB, which was detected visually only in 4 min. Importantly, a systematic study of catalytic activity of PDI-CeCoO3 by different means, including fluorescent probe, electrochemical data, diffuse reflection spectra together with free radical scavenger is executed, verifying that the catalytic activity were from O2- and electron holes (h+). And, the transfer of photogenerated carriers in the PDI-CeCoO3 was the Z-scheme heterojuntion mechanism. Furthermore, the peroxidase-like activity of PDI-CeCoO3 was significantly inhibited by Glutathione (GSH), resulting in fading of blue oxTMB. Based on this, a colorimetric assay for GSH biosensing has been developed. And, the liner range for GSH detection is from 1 to 10 μM with a detection limit of 0.658 μM. The recovery of GSH with different concentrations from 90.0% to 105.9% and the relative standard deviation (RSD) from 1.9% to 5.1%. This colorimetric sensor can be used to detect GSH in real samples.
Collapse
|
6
|
Li L, Li Y, Qin W, Qian Y. Potentiometric detection of glucose based on oligomerization with a diboronic acid using polycation as an indicator. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4422-4428. [PMID: 32924037 DOI: 10.1039/d0ay01399d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel potentiometric sensor for d-glucose (Glu) using 4,4'-biphenyldiboronic acid as a receptor and polyion (poly-N-(3-aminopropyl)methacrylamide, PAPMA) as an indicator is described. The diboronic acid condenses with Glu via its two cis-diol units to form cyclic or linear oligomeric polyanions which can interact electrostatically with PAPMA, thus efficiently decreasing its potentiometric response on a polycation-sensitive membrane electrode. Although d-fructose (Fru), d-galactose (Gal) and d-mannose (Man) show even higher binding affinities to the diboronic acid as compared to Glu, these monosaccharides with only one cis-diol unit cannot oligomerize with the receptor, which efficiently excludes the interferences from the Glu's stereoisomers. The results obtained from blood sample analysis indicate that the proposed sensor is promising for detection of Glu in real-world applications.
Collapse
Affiliation(s)
- Long Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | | | | | | |
Collapse
|
7
|
Martynko E, Kirsanov D. Application of Chemometrics in Biosensing: A Review. BIOSENSORS 2020; 10:E100. [PMID: 32824611 PMCID: PMC7460467 DOI: 10.3390/bios10080100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/17/2022]
Abstract
The field of biosensing is rapidly developing, and the number of novel sensor architectures and different sensing elements is growing fast. One of the most important features of all biosensors is their very high selectivity stemming from the use of bioreceptor recognition elements. The typical calibration of a biosensor requires simple univariate regression to relate a response value with an analyte concentration. Nevertheless, dealing with complex real-world sample matrices may sometimes lead to undesired interference effects from various components. This is where chemometric tools can do a good job in extracting relevant information, improving selectivity, circumventing a non-linearity in a response. This brief review aims to discuss the motivation for the application of chemometric tools in biosensing and provide some examples of such applications from the recent literature.
Collapse
Affiliation(s)
| | - Dmitry Kirsanov
- Applied Chemometrics Laboratory, Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504 Peterhoff, Russia;
| |
Collapse
|
8
|
Wu R, Song H, Wang Y, Wang L, Zhu Z. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Ibadullaeva SZ, Appazov NO, Tarahovsky YS, Zamyatina EA, Fomkina MG, Kim YA. Amperometric Multi-Enzyme Biosensors: Development and Application, a Short Review. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Bagal-Kestwal DR, Chiang BH. Exploration of Chitinous Scaffold-Based Interfaces for Glucose Sensing Assemblies. Polymers (Basel) 2019; 11:E1958. [PMID: 31795230 PMCID: PMC6960682 DOI: 10.3390/polym11121958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
: The nanomaterial-integrated chitinous polymers have promoted the technological advancements in personal health care apparatus, particularly for enzyme-based devices like the glucometer. Chitin and chitosan, being natural biopolymers, have attracted great attention in the field of biocatalysts engineering. Their remarkable tunable properties have been explored for enhancing enzyme performance and biosensor advancements. Currently, incorporation of nanomaterials in chitin and chitosan-based biosensors are also widely exploited for enzyme stability and interference-free detection. Therefore, in this review, we focus on various innovative multi-faceted strategies used for the fabrication of biological assemblies using chitinous biomaterial interface. We aim to summarize the current development on chitin/chitosan and their nano-architecture scaffolds for interdisciplinary biosensor research, especially for analytes like glucose. This review article will be useful for understanding the overall multifunctional aspects and progress of chitin and chitosan-based polysaccharides in the food, biomedical, pharmaceutical, environmental, and other diverse applications.
Collapse
Affiliation(s)
- Dipali R. Bagal-Kestwal
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Singh K, Singh BP, Chauhan R, Basu T. Fabrication of amperometric bienzymatic glucose biosensor based on MWCNT tube and polypyrrole multilayered nanocomposite. J Appl Polym Sci 2012. [DOI: 10.1002/app.34985] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- K. Singh
- Amity School of Engineering and Technology, Amity University, Noida, UP, India
| | - B. P. Singh
- Carbon Technology Unit Engineering Materials Division, National Physical Laboratory, New Delhi 110012, India
| | - Ruchika Chauhan
- Amity Institute of Nano Technology, Amity University, Noida, UP, India
| | - T. Basu
- Amity Institute of Nano Technology, Amity University, Noida, UP, India
| |
Collapse
|
12
|
Li F, Feng Y, Yang L, Li L, Tang C, Tang B. A selective novel non-enzyme glucose amperometric biosensor based on lectin-sugar binding on thionine modified electrode. Biosens Bioelectron 2010; 26:2489-94. [PMID: 21126864 DOI: 10.1016/j.bios.2010.10.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/08/2010] [Accepted: 10/25/2010] [Indexed: 11/16/2022]
Abstract
A novel non-enzyme glucose amperometric biosensor was fabricated based on biospecific binding affinity of concanavalin A (Con A) for D-glucose on thionine (TH) modified electrode. TH can be covalently immobilized on potentiostatically activated glassy carbon electrode through Schiff-base reaction. Subsequently, the surface-adherent polydopamine film formed by self-polymerization of dopamine attached to TH and afforded binding sites for the subsequent immobilization of Con A molecules via Michael addition and/or Schiff-base reaction with high stability. Thus, a sensing platform for specific detection towards D-glucose was established. The binding of Con A towards D-glucose can be monitored through the decrease of the electrode response of the TH moiety. Due to the high affinity of Con A for D-glucose and high stability of the resulting sensing platform, the fabricated biosensor exhibited high selectivity, good sensitivity, and wide linear range from 1.0×10(-6) to 1.0×10(-4) M with a low detection limit of 7.5×10(-7) M towards D-glucose.
Collapse
Affiliation(s)
- Feng Li
- College of Chemistry, Chemical Engineering and Materials Science, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, 88 Wenhua East Road, Jinan 250014, People's Republic of China
| | | | | | | | | | | |
Collapse
|