1
|
Zhu Q, Ge Y, Li W, Ma J. Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable Electrostatic Parameters. J Chem Theory Comput 2023; 19:396-411. [PMID: 36592097 DOI: 10.1021/acs.jctc.2c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Polarization plays important roles in charged and hydrogen bonding containing systems. Much effort ranging from the construction of physics-based models to quantum mechanism (QM)-based and machine learning (ML)-assisted models have been devoted to incorporating the polarization effect into the conventional force fields at different levels, such as atomic and coarse grained (CG). The application of polarizable force fields or polarization models was limited by two aspects, namely, computational cost and transferability. Different from physics-based models, no predetermining parameters were required in the QM-based approaches. Taking advantage of both the accuracy of QM calculations and efficiency of molecular mechanism (MM) and ML, polarization effects could be treated more efficiently while maintaining the QM accuracy. The computational cost could be reduced with variable electrostatic parameters, such as the charge, dipole, and electronic dielectric constant with the help of linear scaling fragmentation-based QM calculations and ML models. Polarization and entropy effects on the prediction of partition coefficient of druglike molecules are demonstrated by using both explicit or implicit all-atom molecular dynamics simulations and machine learning-assisted models. Directions and challenges for future development are also envisioned.
Collapse
Affiliation(s)
- Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Yang Ge
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, P. R. China
| |
Collapse
|
2
|
Zhu Q, Gu Y, Hu L, Gaudin T, Fan M, Ma J. Shear viscosity prediction of alcohols, hydrocarbons, halogenated, carbonyl, nitrogen-containing, and sulfur compounds using the variable force fields. J Chem Phys 2021; 154:074502. [PMID: 33607909 DOI: 10.1063/5.0038267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Viscosity of organic liquids is an important physical property in applications of printing, pharmaceuticals, oil extracting, engineering, and chemical processes. Experimental measurement is a direct but time-consuming process. Accurately predicting the viscosity with a broad range of chemical diversity is still a great challenge. In this work, a protocol named Variable Force Field (VaFF) was implemented to efficiently vary the force field parameters, especially λvdW, for the van der Waals term for the shear viscosity prediction of 75 organic liquid molecules with viscosity ranging from -9 to 0 in their nature logarithm and containing diverse chemical functional groups, such as alcoholic hydroxyl, carbonyl, and halogenated groups. Feature learning was applied for the viscosity prediction, and the selected features indicated that the hydrogen bonding interactions and the number of atoms and rings play important roles in the property of viscosity. The shear viscosity prediction of alcohols is very difficult owing to the existence of relative strong intermolecular hydrogen bonding interaction as reflected by density functional theory binding energies. From radial and spatial distribution functions of methanol, we found that the van der Waals related parameters λvdW are more crucial to the viscosity prediction than the rotation related parameters, λtor. With the variable λvdW-based all-atom optimized potentials for liquid simulations force field, a great improvement was observed in the viscosity prediction for alcohols. The simplicity and uniformity of VaFF make it an efficient tool for the prediction of viscosity and other related properties in the rational design of materials with the specific properties.
Collapse
Affiliation(s)
- Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Limu Hu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Théophile Gaudin
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Mengting Fan
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
3
|
Zhu Q, Lu Y, He X, Liu T, Chen H, Wang F, Zheng D, Dong H, Ma J. Entropy and Polarity Control the Partition and Transportation of Drug-like Molecules in Biological Membrane. Sci Rep 2017; 7:17749. [PMID: 29255188 PMCID: PMC5735159 DOI: 10.1038/s41598-017-18012-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/05/2017] [Indexed: 11/09/2022] Open
Abstract
Partition and transportation of drug in the plasma membrane of a mammalian cell are the prerequisite for its function on target protein. Therefore, comprehensive understanding of the physicochemical properties and mechanism behind these complex phenomena is crucial in pharmaceutical research. By using the state-of-art molecular simulations with polarization effect implicitly or explicitly included, we studied the permeation behavior of 2-aminoethoxydiphenyl borate (2-APB), a broad-spectrum modulator for a number of membrane proteins. We showed that the protonation state and therefore the polarity of the drug is critical for its partition, and that the drug is likely to switch between different protonation states along its permeation pathway. By changing the degrees of freedom, protonation further affects the thermodynamic of the permeation pathway of 2-APB, leading to different entropic contributions. A survey on 54 analog structures with similar backbone to 2-APB showed that delicate balance between entropy and polarity plays an important role in drugs’ potency.
Collapse
Affiliation(s)
- Qiang Zhu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, P. R. China.,Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yilin Lu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, P. R. China
| | - Xibing He
- School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15213, USA
| | - Tao Liu
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, P. R. China
| | - Hongwei Chen
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, P. R. China
| | - Fang Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, P. R. China.,College of electronic information engineering, Sanjiang University, Nanjing, 210012, P. R. China
| | - Dong Zheng
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, P. R. China.
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
4
|
Jiang N, Ma J. Can a Proton be Encapsulated in Tetraamido/Diamino Quaternized Macrocycles in Aqueous Solution and Electric Field? Chemphyschem 2011; 12:2453-60. [DOI: 10.1002/cphc.201100229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Indexed: 11/05/2022]
|