1
|
Rafiee Z, Bodaghi A, Omidi S. Fabrication of a photo- and pH-sensitive micelle by self-assembly of azobenzene polyglycerol for anticancer drug delivery. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
Li M, Chen LJ, Zhang Z, Luo Q, Yang HB, Tian H, Zhu WH. Conformer-dependent self-assembled metallacycles with photo-reversible response. Chem Sci 2019; 10:4896-4904. [PMID: 31160961 PMCID: PMC6510319 DOI: 10.1039/c9sc00757a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
Discrete, well-defined metallacycles and metallacages with stimuli-responsive behaviors have been largely predominated by the organic donor/metal acceptor paradigm with spontaneous formation of coordination bonds. However, light-driven self-assembly systems usually show relatively low utilization yield of photons and low fatigue resistance. Given that almost no example illustrates the different self-assembly behaviors of antiparallel and parallel conformers in the traditional photochromic diarylethene (DAE) system, here we have for the first time constructed a unique series of photoactive conformer-dependent metallacycles, focusing on the characterization and comparison of self-assembly behavior in different ligand conformers with different di-platinum(ii) acceptors. Their photoswitchable scaffold sizes and shapes are precisely controlled by photochromically separable parallel or anti-parallel conformers via coordination-driven self-assembly. The ap-conformer and closed form provide larger bending angles upon coordination with di-Pt(ii) acceptors into hexagon [6 + 6] or [3 + 3] while the p-conformer only can form smaller polygon cycles. Notably, in contrast with the non-photoactive parallel conformer, the reversible interconversion of anti-parallel ring-open and ring-closed conformer metallacycles can be achieved by alternate irradiation with UV and visible light, respectively, along with a relatively high conversion ratio and good fatigue resistance. This work provides a potential way to construct smart materials for use in sensing, catalysis and drug delivery systems.
Collapse
Affiliation(s)
- Mengqi Li
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , Chang-Kung Chuang Institute , School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China .
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Qianfu Luo
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , Chang-Kung Chuang Institute , School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China .
| | - He Tian
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , Shanghai Key Laboratory of Functional Materials Chemistry , Joint International Research Laboratory of Precision Chemistry and Molecular Engineering , Feringa Nobel Prize Scientist Joint Research Center , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China .
| |
Collapse
|
4
|
Wei Y, Li X, Xu Z, Sun H, Zheng Y, Peng L, Liu Z, Gao C, Gao M. Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li–S batteries. Polym Chem 2015. [DOI: 10.1039/c4py01055h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Highly soluble inverse-vulcanized hyperbranched polymers were synthesized as cathode-active materials in Li–S batteries.
Collapse
Affiliation(s)
- Yangyang Wei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province & Department of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- PR China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Haiyan Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Yaochen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Li Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Zheng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Mingxia Gao
- State Key Laboratory of Silicon Materials
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province & Department of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- PR China
| |
Collapse
|
5
|
Zheng Y, Li S, Weng Z, Gao C. Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 2015; 44:4091-130. [DOI: 10.1039/c4cs00528g] [Citation(s) in RCA: 498] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in hyperbranched polymers from the viewpoint of structure, click synthesis and functionalization towards their applications in the last decade.
Collapse
Affiliation(s)
- Yaochen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Sipei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhulin Weng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
6
|
He L, Yang X, Wang K, Wang Q, Zhao F, Huang J, Liu J. A self-assembled conformational switch: a host–guest stabilized triple stem molecular beacon via a photoactivated and thermal regeneration mode. Chem Commun (Camb) 2014; 50:7803-5. [DOI: 10.1039/c4cc01651c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy for construction of a conformational switch is presented with a combination of DNA self-assembly and reversible host–guest inclusion interaction.
Collapse
Affiliation(s)
- Leiliang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082, China
| | - Fang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082, China
| |
Collapse
|
7
|
Li S, Han J, Gao C. High-density and hetero-functional group engineering of segmented hyperbranched polymersvia click chemistry. Polym Chem 2013. [DOI: 10.1039/c2py20951a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|