1
|
Jena S, Tulsiyan KD, Rana A, Choudhury SS, Biswal HS. Non-conventional Hydrogen Bonding and Aromaticity: A Systematic Study on Model Nucleobases and Their Solvated Clusters. Chemphyschem 2020; 21:1826-1835. [PMID: 32506748 DOI: 10.1002/cphc.202000386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Indexed: 12/25/2022]
Abstract
The conceptual development of aromaticity is essential to rationalize and understand the structure and behavior of aromatic heterocycles. This work addresses for the first time, the interconnection between aromaticity and sulfur/selenium centered hydrogen bonds (S/SeCHBs) involved in representative heterocycle models of canonical nucleobases (2-Pyridone; 2PY) and its sulfur (2-Thiopyridone; 2TPY) and selenium (2-Selenopyridone; 2SePY) analogs. The nucleus-independent chemical shift (NICS) and gauge induced magnetic current density (GIMIC) values suggested significant reduction of aromaticity upon replacement of exocyclic carbonyl oxygen with sulfur and selenium. However, we observed two-fold (57 %) and three-fold (80 %) enhancement in the aromaticity for 2TPY dimer, and 2SePY dimer, respectively which are connected through S/SeCHBs. Aromaticity enhancement was also noticed in 1 : 1 H-bonded complexes (heterodimers), micro hydrated clusters and for bulk hydration. It is expected that exocyclic S and Se incorporation into heterocycles without compromising aromatic loss would definitely reinforce to design new supramolecular building blocks via S/SeCH-bonded complexes.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Shubhranshu S Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| |
Collapse
|
3
|
Abdur R, Gerlits OO, Gan J, Jiang J, Salon J, Kovalevsky AY, Chumanevich AA, Weber IT, Huang Z. Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:354-61. [PMID: 24531469 PMCID: PMC3940196 DOI: 10.1107/s1399004713027922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.
Collapse
Affiliation(s)
- Rob Abdur
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Oksana O. Gerlits
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jianhua Gan
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jiansheng Jiang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jozef Salon
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Andrey Y. Kovalevsky
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Alexander A. Chumanevich
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Irene T. Weber
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhen Huang
- Department of Chemistry and Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
4
|
Abstract
We have developed a simple method to synthesize 6-seleno-2'-deoxyguanosine (SedG) by selectively replacing the 6-oxygen atom with selenium. This selenium-atom-specific modification (SAM) alters the optical properties of the naturally occurring 2'-deoxyguanosine (dG). Unlike the native dG, the UVabsorption of SedG is significantly influenced by the pH of the aqueous solution. Moreover, SedG is fluorescent at the physiological pH and exhibits pH-dependent fluorescence in aqueous solutions. Furthermore, SedG has noticeable fluorescence in non-aqueous solutions, indicating its sensitivity to environmental changes. This is the first time a fluorescent nucleoside by single-atom alteration has been observed. Fluorescent nucleosides modified by a single atom have great potential as molecular probes with minimal perturbations to investigate nucleoside interactions with proteins, such as membrane-transporter proteins.
Collapse
Affiliation(s)
- Kaur Manindar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Huang Zhen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
5
|
Kaur M, Rob A, Caton-Williams J, Huang Z. Biochemistry of Nucleic Acids Functionalized with Sulfur, Selenium, and Tellurium: Roles of the Single-Atom Substitution. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1152.ch005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Manindar Kaur
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Abdur Rob
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | | | - Zhen Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
6
|
Sheng J, Gan J, Soares AS, Salon J, Huang Z. Structural insights of non-canonical U*U pair and Hoogsteen interaction probed with Se atom. Nucleic Acids Res 2013; 41:10476-87. [PMID: 24013566 PMCID: PMC3905866 DOI: 10.1093/nar/gkt799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Unlike DNA, in addition to the 2′-OH group, uracil nucleobase and its modifications play essential roles in structure and function diversities of non-coding RNAs. Non-canonical U•U base pair is ubiquitous in non-coding RNAs, which are highly diversified. However, it is not completely clear how uracil plays the diversifing roles. To investigate and compare the uracil in U-A and U•U base pairs, we have decided to probe them with a selenium atom by synthesizing the novel 4-Se-uridine (SeU) phosphoramidite and Se-nucleobase-modified RNAs (SeU-RNAs), where the exo-4-oxygen of uracil is replaced by selenium. Our crystal structure studies of U-A and U•U pairs reveal that the native and Se-derivatized structures are virtually identical, and both U-A and U•U pairs can accommodate large Se atoms. Our thermostability and crystal structure studies indicate that the weakened H-bonding in U-A pair may be compensated by the base stacking, and that the stacking of the trans-Hoogsteen U•U pairs may stabilize RNA duplex and its junction. Our result confirms that the hydrogen bond (O4…H-C5) of the Hoogsteen pair is weak. Using the Se atom probe, our Se-functionalization studies reveal more insights into the U•U interaction and U-participation in structure and function diversification of nucleic acids.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA and Department of Biology, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | | | | | | |
Collapse
|