1
|
Zhang Y, Luo Y, Gao S, Zou L, Guan Y, Zhang Y. Liquid crystalline composite hydrogels with large pH-triggered anisotropic swelling for embolotherapy. Acta Biomater 2024; 174:206-216. [PMID: 38101558 DOI: 10.1016/j.actbio.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Inspired by the anisotropic structure of biological tissues, anisotropic hydrogels have been developed using various nanofillers, however, it remains a big challenge to synthesize hydrogels with large swelling anisotropy. Herein a single molecule filler, α-helical polypeptide, instead of nanoscale fillers, was used to synthesize anisotropic hydrogels. First nematic liquid crystal of poly(γ-benzyl l-glutamate) (PBLG) was prepared by shearing and stabilized by embedding in a crosslinked polymer matrix. The resulting PBLG composite gels were then converted to poly(L-glutamic acid) (PLGA) composite gels by debenzylation. The rigid rod-like structure of α-helical PBLG chains makes them easy to be orientated. The pH-sensitivity of PLGA makes the resulting composite gels pH-sensitive without the need to couple with a stimuli-responsive hydrogel matrix. In response to pH change PLGA composite gels swell anisotropically with a much larger swelling degree in the radial direction than in the axial direction. The swelling anisotropy (3.43) is much higher than most anisotropic hydrogels, particularly the stimuli-responsive ones reported previously. The composite gel also exhibits anisotropic mechanical properties with a larger Young's modulus in the axial direction than that in the radial direction. Preliminary test demonstrated that the composite gels have potential in embolotherapy thanks to its large pH-triggered anisotropic swelling. STATEMENT OF SIGNIFICANCE: Anisotropic hydrogels have important biomedical applications. Introduction of oriented nanofillers has been demonstrated a popular and versatile method for their synthesis, however, it remains a big challenge to achieve large swelling anisotropy. Herein a single molecule filler, α-helical polypeptide, instead of nanoscale fillers, was used to synthesize anisotropic hydrogels. This filler can be easily oriented by shearing. More importantly, as single molecule filler, it can constrain the swelling of hydrogel matrix more effectively. Using this filler, a pH-sensitive hydrogel with large swelling anisotropy (3.43) was successfully synthesized. Thanks to its large pH-triggered anisotropic swelling the hydrogel was successfully used as embolic agent to occlude vessels.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Sijia Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Zou
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China
| | - Ying Guan
- Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
2
|
Kikionis S, Iliou K, Karra AG, Polychronis G, Choinopoulos I, Iatrou H, Eliades G, Kitraki E, Tseti I, Zinelis S, Ioannou E, Roussis V. Development of Bi- and Tri-Layer Nanofibrous Membranes Based on the Sulfated Polysaccharide Carrageenan for Periodontal Tissue Regeneration. Mar Drugs 2023; 21:565. [PMID: 37999389 PMCID: PMC10671875 DOI: 10.3390/md21110565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a microbially-induced inflammation of the periodontium that is characterized by the destruction of the periodontal ligament (PDL) and alveolar bone and constitutes the principal cause of teeth loss in adults. Periodontal tissue regeneration can be achieved through guided tissue/bone regeneration (GTR/GBR) membranes that act as a physical barrier preventing epithelial infiltration and providing adequate time and space for PDL cells and osteoblasts to proliferate into the affected area. Electrospun nanofibrous scaffolds, simulating the natural architecture of the extracellular matrix (ECM), have attracted increasing attention in periodontal tissue engineering. Carrageenans are ideal candidates for the development of novel nanofibrous GTR/GBR membranes, since previous studies have highlighted the potential of carrageenans for bone regeneration by promoting the attachment and proliferation of osteoblasts. Herein, we report the development of bi- and tri-layer nanofibrous GTR/GBR membranes based on carrageenans and other biocompatible polymers for the regeneration of periodontal tissue. The fabricated membranes were morphologically characterized, and their thermal and mechanical properties were determined. Their periodontal tissue regeneration potential was investigated through the evaluation of cell attachment, biocompatibility, and osteogenic differentiation of human PDL cells seeded on the prepared membranes.
Collapse
Affiliation(s)
- Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Konstantina Iliou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Aikaterini G. Karra
- Department of Basic Sciences, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.K.); (E.K.)
| | - Georgios Polychronis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Ioannis Choinopoulos
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (I.C.); (H.I.)
| | - Hermis Iatrou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (I.C.); (H.I.)
| | - George Eliades
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Efthymia Kitraki
- Department of Basic Sciences, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.K.); (E.K.)
| | - Ioulia Tseti
- Uni-Pharma S.A., 35 Kalyftaki Str., 14564 Kifissia, Greece;
| | - Spiros Zinelis
- Department of Biomaterials, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.P.); (G.E.); (S.Z.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (K.I.); (E.I.)
| |
Collapse
|
3
|
Hasannia M, Lamei K, Abnous K, Taghdisi SM, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102645. [PMID: 36549556 DOI: 10.1016/j.nano.2022.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively via double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 DNA aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with hydrodynamic sizes of 265 ± 52 and 229 ± 44 nm respectively. In vitro cellular cytotoxicity and cellular uptake were studied in nucleolin positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in CHO cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Maliheh Hasannia
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Lamei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Liu Y, Zhao C, Chen C. Chirality-Governed UCST Behavior in Polypeptides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yali Liu
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Ma T, Tsai C, Luo S, Chen W, Huang Y, Su W. Chemical structures and compositions of peptide copolymer films affect their functional properties for cell adhesion and cell viability. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhang F, Yu L, Deng Z, Liu S, Wang C, Liu L. Composition-dependent wettability of nature-inspired homo poly(amino acid) coating and its influences on bacterial adhesion. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Tinajero-Díaz E, Kimmins SD, García-Carvajal ZY, Martínez de Ilarduya A. Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Park SB, Sung MH, Uyama H, Han DK. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101341] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Qian Y, You D, Lin F, Wei J, Wang Y, Bi Y. Enzyme triggered disassembly of amphiphilic linear-dendritic block copolymer micelles based on poly[N-(2-hydroxyethyl-l-glutamine)]. Polym Chem 2019. [DOI: 10.1039/c8py01231h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New amphiphilic linear-dendritic diblock copolymers based on poly[N-(2-hydroxyethyl-l-glutamine)] have been synthesized, and their micellar assemblies can disassemble and release encapsulated molecular cargo upon enzymatic activation.
Collapse
Affiliation(s)
- Yangyang Qian
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Dan You
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Feng Lin
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Junwu Wei
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yujia Wang
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| |
Collapse
|
12
|
Sutisna B, Bilalis P, Musteata V, Smilgies DM, Peinemann KV, Hadjichristidis N, Nunes SP. Self-Assembled Membranes with Featherlike and Lamellar Morphologies Containing α-Helical Polypeptides. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | | | - Detlef-M. Smilgies
- Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, New York 14853, United States
| | | | | | | |
Collapse
|
13
|
Yan S, Xia P, Xu S, Zhang K, Li G, Cui L, Yin J. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA- g-Poly(γ-benzyl-l-glutamate) for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16270-16281. [PMID: 29688701 DOI: 10.1021/acsami.8b02448] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Porous microcarriers have aroused increasing attention recently, which can create a protected environment for sufficient cell seeding density, facilitate oxygen and nutrient transfer, and well support the cell attachment and growth. In this study, porous microcarriers fabricated from the strontium-substituted hydroxyapatite- graft-poly(γ-benzyl-l-glutamate) (Sr10-HA- g-PBLG) hybrid nanocomposite were developed. The surface grating of PBLG, the micromorphology and element distribution, mechanical strength, in vitro degradation, and Sr2+ ion release of the obtained Sr10-HA- g-PBLG porous microcarriers were investigated, respectively. The grafting ratio and the molecular weight of the grafted PBLG of Sr10-HA- g-PBLG could be effectively controlled by varying the initial ratio of BLG-NCA to Sr10-HA-NH2. The microcarriers exhibited a highly porous and interconnected microstructure with the porosity of about 90% and overall density of 1.03-1.06 g/cm3. Also, the degradation rate of Sr10-HA-PBLG microcarriers could be effectively controlled and long-term Sr2+ release was obtained. The Sr10-HA-PBLG microcarriers allowed cells adhesion, infiltration, and proliferation and promoted the osteogenic differentiation of rabbit adipose-derived stem cells (ADSCs). Successful healing of femoral bone defect was proved by injection of the ADSCs-seeded Sr10-HA-PBLG microcarriers in a rabbit model.
Collapse
Affiliation(s)
- Shifeng Yan
- Department of Polymer Materials , Shanghai University , 99 Shangda Road , Shanghai 200444 , People's Republic of China
| | - Pengfei Xia
- Department of Polymer Materials , Shanghai University , 99 Shangda Road , Shanghai 200444 , People's Republic of China
| | - Shenghua Xu
- Department of Polymer Materials , Shanghai University , 99 Shangda Road , Shanghai 200444 , People's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials , Shanghai University , 99 Shangda Road , Shanghai 200444 , People's Republic of China
| | - Guifei Li
- Department of Polymer Materials , Shanghai University , 99 Shangda Road , Shanghai 200444 , People's Republic of China
| | - Lei Cui
- Department of Orthopedics, Shanghai Tongji Hospital , Tongji University School of Medicine , 389 Xincun Road , Shanghai 200065 , People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials , Shanghai University , 99 Shangda Road , Shanghai 200444 , People's Republic of China
| |
Collapse
|
14
|
Campos-García VR, Herrera-Fernández D, Espinosa-de la Garza CE, González G, Vallejo-Castillo L, Avila S, Muñoz-García L, Medina-Rivero E, Pérez NO, Gracia-Mora I, Pérez-Tapia SM, Salazar-Ceballos R, Pavón L, Flores-Ortiz LF. Process signatures in glatiramer acetate synthesis: structural and functional relationships. Sci Rep 2017; 7:12125. [PMID: 28935954 PMCID: PMC5608765 DOI: 10.1038/s41598-017-12416-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022] Open
Abstract
Glatiramer Acetate (GA) is an immunomodulatory medicine approved for the treatment of multiple sclerosis, whose mechanisms of action are yet to be fully elucidated. GA is comprised of a complex mixture of polypeptides with different amino acid sequences and structures. The lack of sensible information about physicochemical characteristics of GA has contributed to its comprehensiveness complexity. Consequently, an unambiguous determination of distinctive attributes that define GA is of highest relevance towards dissecting its identity. Herein we conducted a study of characteristic GA heterogeneities throughout its manufacturing process (process signatures), revealing a strong impact of critical process parameters (CPPs) on the reactivity of amino acid precursors; reaction initiation and polymerization velocities; and peptide solubility, susceptibility to hydrolysis, and size-exclusion properties. Further, distinctive GA heterogeneities were correlated to defined immunological and toxicological profiles, revealing that GA possesses a unique repertoire of active constituents (epitopes) responsible of its immunological responses, whose modification lead to altered profiles. This novel approach established CPPs influence on intact GA peptide mixture, whose physicochemical identity cannot longer rely on reduced properties (based on complete or partial GA degradation), providing advanced knowledge on GA structural and functional relationships to ensure a consistent manufacturing of safe and effective products.
Collapse
Affiliation(s)
- Víctor R Campos-García
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Daniel Herrera-Fernández
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Carlos E Espinosa-de la Garza
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - German González
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.,Departamento de Farmacología, Cinvestav-IPN, Avenida Instituto Politécnico Nacional 2508, Colonia San Pedro Zacatenco, 07360, Ciudad de México, Mexico
| | - Sandra Avila
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Leslie Muñoz-García
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Néstor O Pérez
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Isabel Gracia-Mora
- Departamento de Quı́mica Inorgánica y Nuclear, Facultad de Quı́mica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Investigación Científica 70, 04510, Ciudad de México, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.,Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - Rodolfo Salazar-Ceballos
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, 14370, Ciudad de México, Mexico
| | - Luis F Flores-Ortiz
- Unidad de Investigación y Desarrollo, Probiomed S.A. de C.V., Cruce de Carreteras Acatzingo-Zumpahuacán s/n, Colonia Los Shiperes, Tenancingo, 52400, Estado de México, Mexico.
| |
Collapse
|
15
|
Baumgartner R, Kuai D, Cheng J. Synthesis of controlled, high-molecular weight poly(l-glutamic acid) brush polymers. Biomater Sci 2017; 5:1836-1844. [PMID: 28664205 PMCID: PMC6716790 DOI: 10.1039/c7bm00339k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and characterization of high-molecular weight poly(l-glutamic acid) based brush polymers. Utilizing a combination of ring-opening metathesis polymerization of norbornene based monomers and ring-opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride, high-molecular weight γ-benzyl protected poly(l-glutamic acid) brush polymers are synthesized. Controlled and complete deprotection of the benzyl groups using trimethylsilyl iodide resulted in poly(l-glutamic acid) based brush polymers with molecular weights up to 3.6 MDa, which may potentially be used to prepare size-controlled unimolecular polymeric nanomedicine for drug delivery applications. Camptothecin brush poly(l-glutamic acid) conjugates were prepared and their stability, drug release kinetics, and in vitro toxicity were studied.
Collapse
Affiliation(s)
- Ryan Baumgartner
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
16
|
Wu J, Zhang K, Yu X, Ding J, Cui L, Yin J. Hydration of hydrogels regulates vascularization in vivo. Biomater Sci 2017; 5:2251-2267. [DOI: 10.1039/c7bm00268h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The key barrier to the clinical application of tissue engineering scaffolds is the limitation of rapid and sufficient vascularization.
Collapse
Affiliation(s)
- Jie Wu
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
- Key Laboratory of Polymer Ecomaterials
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Xi Yu
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Lei Cui
- Department of Plastic Surgery
- Shanghai East Hospital
- Tongji University School of Medicine
- Shanghai 200092
- People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| |
Collapse
|
17
|
Shirbin SJ, Ladewig K, Fu Q, Klimak M, Zhang X, Duan W, Qiao GG. Cisplatin-Induced Formation of Biocompatible and Biodegradable Polypeptide-Based Vesicles for Targeted Anticancer Drug Delivery. Biomacromolecules 2015; 16:2463-74. [PMID: 26166192 DOI: 10.1021/acs.biomac.5b00692] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.
Collapse
Affiliation(s)
- Steven J Shirbin
- †Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Katharina Ladewig
- †Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Qiang Fu
- †Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Molly Klimak
- †Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Xiaoqing Zhang
- ‡CSIRO Manufacturing Flagship, Clayton South, Victoria 3169, Australia
| | - Wei Duan
- §School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| | - Greg G Qiao
- †Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
18
|
Ding J, Li C, Zhang Y, Xu W, Wang J, Chen X. Chirality-mediated polypeptide micelles for regulated drug delivery. Acta Biomater 2015; 11:346-55. [PMID: 25278445 DOI: 10.1016/j.actbio.2014.09.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/06/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
Two kinds of triblock poly(ethylene glycol)-polyleucine (PEG-PLeu) copolymers were synthesized through the ring-opening polymerization of L-Leu N-carboxyanhydride (NCA), or equivalent D-Leu NCA and L-Leu NCA with amino-terminated PEG as a macroinitiator. The amphiphilic copolymers spontaneously self-assembled into spherical micellar aggregations in an aqueous environment. The micelle with a racemic polypeptide core exhibited smaller critical micelle concentration and diameter compared to those with a levorotatory polypeptide core. A model anthracycline antineoplastic agent, i.e., doxorubicin (DOX), was loaded into micelles through nanoprecipitation, and the PEG-P(D,L-Leu) micelle exhibited higher drug-loading efficacy than that with a P(L-Leu) core-this difference was attributed to the flexible and compact P(L-Leu) core. Sustained in vitro DOX release from micelles with both levorotatory and racemic polypeptide cores was observed, and the DOX-loaded PEG-P(D,L-Leu) micelle exhibited a slower release rate. More interestingly, DOX-loaded micelles exhibited chirality-mediated antitumor efficacy in vitro and in vivo, which are all better than that of free DOX. Furthermore, both enhanced tumor inhibition and excellent security in vivo were confirmed by histopathological or in situ cell apoptosis analyses. Therefore, DOX-loaded PEG-PLeu micelles appear to be an interesting nanoscale polymeric formulation for promising malignancy chemotherapy.
Collapse
Affiliation(s)
- Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
| |
Collapse
|
19
|
Fang J, Yong Q, Zhang K, Sun W, Yan S, Cui L, Yin J. Novel injectable porous poly(γ-benzyl-l-glutamate) microspheres for cartilage tissue engineering: preparation and evaluation. J Mater Chem B 2015; 3:1020-1031. [PMID: 32261981 DOI: 10.1039/c4tb01333f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel injectable synthetic polypeptide of a poly(γ-benzyl-l-glutamate) macroporous microcarrier was developed for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jianjun Fang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Qi Yong
- Medical Science & Research Center
- Beijing Shijitan Hospital
- Capital Medical University
- Beijing 100038
- P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wentao Sun
- Medical Science & Research Center
- Beijing Shijitan Hospital
- Capital Medical University
- Beijing 100038
- P. R. China
| | - Shifeng Yan
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Lei Cui
- Medical Science & Research Center
- Beijing Shijitan Hospital
- Capital Medical University
- Beijing 100038
- P. R. China
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|