1
|
Sharma P, Naithani S, Layek S, Kumar A, Rawat R, Kaja S, Nag A, Kumar S, Goswami T. Development of low-cost copper nanoclusters for highly selective "turn-on" sensing of Hg 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122697. [PMID: 37071963 DOI: 10.1016/j.saa.2023.122697] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
The development of low-cost earth abundant metal based fluorescent sensors for a rapid and selective nanomolar level detection of Hg2+ is essential due to the increasing world-wide concern of its detrimental effect on humans as well as the environment. Herein, we present a perylene tetracarboxylic acid functionalized copper nanoclusters (CuNCs) based "turn-on" fluorescence probe for highly selective detection of toxic Hg2+ ions. The fabricated CuNCs exhibited high photostability with emission maximum centered at 532 nm (λex = 480 nm). The fluorescence intensity of CuNCs was remarkably enhanced upon the addition of Hg2+ over other competing ions and neutral analytes. Notably, the 'turn-on' fluorescence response exhibits highly sensitive detection limit as low as 15.9 nM (S/N ∼ 3). The time resolved fluorescence spectroscopy suggested the energy transfer between CuNCs and Hg2+ ions following either inhibited fluorescence resonance energy transfer (FRET) or surface modification of CuNCs during Hg2+ sensing. This study offers the systematic design and development of new fluorescent 'turn-on' nanoprobes for rapid and selective recognition of heavy metal ions.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Samar Layek
- Department of Physics, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Amit Kumar
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India
| | - Reema Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Sravani Kaja
- Department of Chemistry, BITS Pilani, Hyderabad 5000078, India
| | - Amit Nag
- Department of Chemistry, BITS Pilani, Hyderabad 5000078, India
| | - Sushil Kumar
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Sciences Cluster, University of Petroleum & Energy Studies (UPES), Energy Acres Building, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
2
|
Xie YQ, Zhang YM, Li ZH, Yao H, Wei TB, Shi BB, Qu WJ, Lin Q. Synthesis, crystal structure of a novel metal–organic framework and its catalyzing properties on the selective oxidation of cyclohexene to cyclohexenone. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Kokilavani S, Syed A, Raju LL, Marraiki N, Al-Rashed S, Elgorban AM, Thomas AM, Khan SS. Highly selective and sensitive tool for the detection of Hg(II) using 3-(Trimethoxysilyl) propyl methacrylate functionalized Ag-Ce nanocomposite from real water sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118738. [PMID: 32731149 DOI: 10.1016/j.saa.2020.118738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Mercury and its derivates cause distinct toxicity and it is detrimental to the ecosystem where the excessive concentration contributes towards the environmental pollutants. The current study reported a colorimetric method for the detection of Hg(II) ion with high specificity and selectivity using Ag-Ce nanocomposite (NC) functionalized by 3-(Trimethoxysilyl) propyl methacrylate. The synthesized Ag-Ce NC was characterized by using double beam UV-visible spectrophotometer, zeta sizer, EDS, TEM, FT-IR, XRD and particle size analyzer. The synthesized particle possessed an average particle size of 27 ± 1 nm and zeta potential of -39.32 ± 3 mV. The brownish yellow colored Ag-Ce NC changed to colorless in presence of Hg(II) where the colorimetric detection was extremely specific and superior towards Hg(II) ion on comparing the tests with other metal ions. An excellent linear correlation was observed between absorbance (395 nm) and Hg(II) concentrations (1 nM-10 μM) (R2 = 0.988) with LOD of 0.03 nM. A cotton swab based probe was prepared for selective, elegant and low cost colorimetric method to detect Hg(II). The parametric study was performed for optimizing the suitable condition. The colorimetric probe developed by this study for Hg(II) detection using Ag-Ce NC shows excellent practical applicability.
Collapse
Affiliation(s)
- S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
4
|
Pandey R, Kumar A, Xu Q, Pandey DS. Zinc(ii), copper(ii) and cadmium(ii) complexes as fluorescent chemosensors for cations. Dalton Trans 2020; 49:542-568. [PMID: 31894793 DOI: 10.1039/c9dt03017d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence chemosensing behavior of Zn(ii), Cu(ii), and Cd(ii) based complexes toward cations has been described. Cation detection via conventional mechanisms, metal-metal exchange and chemodosimetric approaches along with the importance of metal ions and the scope, significance, and challenges with regard to the detection of cations by metal complex based probes will be discussed in detail. The fundamentals of photophysical behavior and mechanisms involved in the fluorescence detection of analytes will also be described. This article provides a detailed overview of Zn(ii), Cu(ii), and Cd(ii) based complexes as fluorescent probes for cations, together with essential discussions pertaining to detection mechanisms.
Collapse
Affiliation(s)
- Rampal Pandey
- Department of Chemistry, National Institute of Technology Uttarakhand, Srinagar, Garhwal 246174, India
| | | | | | | |
Collapse
|
5
|
Synthesis of new bis-benzylidene-hydrazides as a sensitive chromogenic sensor for naked-eye detection of CN¯ and AcO¯ ions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Joshi S, Kumari S, Sarmah A, Pant DD, Sakhuja R. Detection of Hg2+ ions in aqueous medium using an indole-based fluorescent probe: Experimental and theoretical investigations. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Gu X, Fang Z. A novel Hg 2+-selective fluorescent chemprobe based on thiooxorhodamine-B and β-C-glycoside. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:495-501. [PMID: 27728878 DOI: 10.1016/j.saa.2016.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
In this paper, two novel easily available probes based on rhodamine B and β-C-glycoside were synthesized and characterized by 1H NMR, 13C NMR and elemental analysis. Sensor 1 exhibited very high sensitivity and selectivity toward Hg2+ over other metal ions, due to the opening of the spiro ring in thiooxorhodamine B caused by Hg2+ through desulfurization. The binding analysis using Job's plot suggested 1:1 stoichiometry for the complexes formed for Hg2+. The fluorescent probe is pH independent in medium condition and common interferent ions do not show any interference with the Hg2+ determination. It is anticipated that 1 could be a good candidate probe and has potential application for Hg2+ determination.
Collapse
Affiliation(s)
- Xiaomin Gu
- School of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing, JiangSu 210 094, PR China
| | - Zhijie Fang
- School of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei St, Nanjing, JiangSu 210 094, PR China.
| |
Collapse
|
8
|
Ding H, Zheng C, Li B, Liu G, Pu S, Jia D, Zhou Y. A rhodamine-based sensor for Hg2+ and resultant complex as a fluorescence sensor for I−. RSC Adv 2016. [DOI: 10.1039/c6ra17861h] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rhodamine-based sensor displays a quick response for Hg2+. The resulting complex can act as a reversible fluorescence sensor for I−.
Collapse
Affiliation(s)
- Haichang Ding
- Institute for Advanced Ceramics
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Chunhong Zheng
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| | - Baoqiang Li
- Institute for Advanced Ceramics
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang
- PR China
| | - Dechang Jia
- Institute for Advanced Ceramics
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150001
- PR China
| | - Yu Zhou
- Institute for Advanced Ceramics
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150001
- PR China
| |
Collapse
|
9
|
Li Y, Zhao J, Li YF, Xu X, Zhang B, Liu Y, Cui L, Li B, Gao Y, Chai Z. Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics 2016; 8:663-71. [DOI: 10.1039/c5mt00264h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The toxicity mechanisms of rice roots under inorganic mercury (IHg) or methylmercury (MeHg) stress were investigated using metalloproteomic approaches.
Collapse
Affiliation(s)
- Yunyun Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Jiating Zhao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yu-Feng Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Xiaohan Xu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bowen Zhang
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongjie Liu
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Liwei Cui
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Bai Li
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Yuxi Gao
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| | - Zhifang Chai
- State Environmental Protection Engineering Center for Mercury Pollution Prevention and Control
- and Laboratory of Metallomics and Nanometallomics
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049, China
| |
Collapse
|
10
|
Ding J, Li H, Wang C, Yang J, Xie Y, Peng Q, Li Q, Li Z. "Turn-On" Fluorescent Probe for Mercury(II): High Selectivity and Sensitivity and New Design Approach by the Adjustment of the π-Bridge. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11369-11376. [PMID: 25899603 DOI: 10.1021/acsami.5b01800] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
By intelligent design, a new "turn-on" fluorescent probe (1-CN) was obtained based on the deprotection reaction of the dithioacetal promoted by Hg2+ ions, which could sense mercury ions sensitively and selectively, with the detection limit of 8×10(-7) M. Thanks to the apparent turn-on signal, 1-CN has been successfully applied to rapidly detect trace amounts of mercury ions as test strips and cell image.
Collapse
Affiliation(s)
- Jun Ding
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Huiyang Li
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Can Wang
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Jie Yang
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Yujun Xie
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Qian Peng
- ‡Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
| | - Qianqian Li
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| | - Zhen Li
- †Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Nivethaa EAK, Narayanan V, Stephen A. Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 143:242-250. [PMID: 25733251 DOI: 10.1016/j.saa.2015.01.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 01/20/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Polymer matrix type chitosan-silver nanocomposite containing different weight percentage of silver was synthesized by the chemical method. HRTEM images confirm the embedment of silver in the chitosan matrix. The binding of silver to the NH2 and OH groups of chitosan is evident from XPS and FTIR studies. An increase in the absorbance observed from UV-Vis analysis on raising the weight percentage of silver showed the increase in the amount of silver in the nanocomposite. The face centered cubic structure of silver and the semi-crystalline nature of chitosan are evident from the XRD studies. On interaction with mercury the UV-Vis spectra of the composite showed a decrease in intensity and a blue shift confirming the use of the composite as a colorimetric sensor for the detection of mercury. The limit of detection was found to be about 7.2×10(-8)M. High specificity and the sensitivity of the environmental friendly and non-toxic nanocomposite to detect very low concentrations of mercury make the system a perspective one.
Collapse
Affiliation(s)
- E A K Nivethaa
- Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - V Narayanan
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - A Stephen
- Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
12
|
Guan J, Zhang P, Wei T, Lin Q, Yao H, Zhang Y. Highly selective fluorescent chemosensor for Cu2+. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4403-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Abstract
A novel and sulfur-free mercury specifically selective and highly sensitive fluorescent chemosensorLbased on the benzimidazole group and the quinoline group as the fluorescence signal group has been designed and synthesized.
Collapse
Affiliation(s)
- JingHan Hu
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - JianBin Li
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - Jing Qi
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - JuanJuan Chen
- College of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| |
Collapse
|
14
|
Development of an Optode for Detection of Trace Amounts of Hg2+ in Different Real Samples Based on Immobilization of Novel Tetradentate Schiff Bases Bearing Two Thiol Groups in PVC Membrane. J Fluoresc 2014; 24:859-74. [DOI: 10.1007/s10895-014-1364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|