1
|
Shome A, Chahat, Chawla V, Chawla PA. Neuroprotective Effect of Natural Indole and β-carboline Alkaloids against Parkinson's Disease: An Overview. Curr Med Chem 2024; 31:6251-6271. [PMID: 37702172 DOI: 10.2174/0929867331666230913100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α- synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using betacarboline (also known as "β-carboline") and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and indoles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties. In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.
Collapse
Affiliation(s)
- Abhimannu Shome
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
2
|
Hocine S, Duchamp E, Mishra A, Fourquez JM, Hanessian S. Synthesis of Aza-Bridged Perhydroazulene Chimeras of Tropanes and Hederacine A. J Org Chem 2023; 88:4675-4686. [PMID: 36940388 DOI: 10.1021/acs.joc.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
We report the synthesis of two novel azaperhydroazulene tropane-hederacine chimeras A and B, which contain an 8-azabicyclo[3.2.1]octane ring and a 7-azabicyclo[4.1.1]octane ring, respectively. The synthesis of both chimeras was achieved by epoxide ring opening and was governed by the stereochemistry of the hydroxy-epoxide unit. Finally, a density functional theory study was conducted to explain the regioselectivity of the cyclization and the importance of the stereochemistry of the hydroxyl group.
Collapse
Affiliation(s)
- Sofiane Hocine
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| | - Edouard Duchamp
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| | - Akash Mishra
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| | | | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
3
|
A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9672-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Afewerki S, Wang JX, Liao WW, Córdova A. The Chemical Synthesis and Applications of Tropane Alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2018; 81:151-233. [PMID: 30685050 DOI: 10.1016/bs.alkal.2018.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropanes are an important class of alkaloid natural products that are found in plants all over the world. These compounds can exhibit significant biological activity and are among the oldest known medicines. In the early 19th century, tropanes were isolated, characterized, and synthesized by notable chemical researchers. Their significant biological activities have inspired tremendous research efforts toward their synthesis and the elucidation of their pharmacological activity both in academia and in industry. In this chapter, which addresses the developments in this field since 1994, the focus is on the synthesis of these compounds, and several examples of sophisticated synthetic protocols involving both asymmetric and catalytic approaches are described. In addition, the structures of more than 100 new alkaloids are included as well as the applications and pharmacological properties of some tropane alkaloids.
Collapse
Affiliation(s)
- Samson Afewerki
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden; Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Jia-Xin Wang
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, China.
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden; Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Li Y, Li J, Ding H, Li A. Recent advances on the total synthesis of alkaloids in mainland China. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AbstractAlkaloids are a large family of natural products that mostly contain basic nitrogen atoms. Because of their intriguing structures and important functions, they have long been popular targets for synthetic organic chemists. China's chemists have made significant progress in the area of alkaloid synthesis over past decades. In this article, selected total syntheses of alkaloids from research groups in mainland China during the period 2011–16 are highlighted.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Huang PQ, Huang YH. Further Studies on the Direct Synthesis ofα,β-Unsaturated Ketimines andα,β-Enones by Chemoselective Dehydrative Addition of Functionalized Alkenes to Secondary Amides. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| | - Ying-Hong Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
7
|
Tf2O-TMDS combination for the direct reductive transformation of secondary amides to aldimines, aldehydes, and/or amines. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0224-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Mao ZY, Geng H, Zhang TT, Ruan YP, Ye JL, Huang PQ. Stereodivergent and enantioselective total syntheses of isochaetominines A–C and four pairs of isochaetominine C enantiomers: a six-step approach. Org Chem Front 2016. [DOI: 10.1039/c5qo00298b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first total syntheses of (−)-isochaetominines A–C and eight 2,3-cis-stereoisomers of isochaetominine C, and structural revisions of (−)-pseudofischerine and (−)-aniquinazoline D.
Collapse
Affiliation(s)
- Zhong-Yi Mao
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Hui Geng
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Tian-Tian Zhang
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Yuan-Ping Ruan
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jian-Liang Ye
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Pei-Qiang Huang
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
9
|
Wang AE, Chang Z, Liu YP, Huang PQ. Mild N-deacylation of secondary amides by alkylation with organocerium reagents. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
A general method for the direct transformation of common tertiary amides into ketones and amines by addition of Grignard reagents. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Zheng JF, Qian XY, Huang PQ. Direct transformation of amides: a one-pot reductive Ugi-type three-component reaction of secondary amides. Org Chem Front 2015. [DOI: 10.1039/c5qo00146c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient reductive Ugi-type reaction employing common secondary amides as starting materials has been established. The reaction exhibited a broad substrate scope, good chemoselectivity and functional group tolerance.
Collapse
Affiliation(s)
- Jian-Feng Zheng
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiang-Yang Qian
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Pei-Qiang Huang
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
12
|
Huang PQ, Ou W, Ye JL. Aza-Knoevenagel-type condensation of secondary amides: direct access to N-monosubstituted β,β-difunctionalized enamines. Org Chem Front 2015. [DOI: 10.1039/c5qo00191a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient approach toN-monosubstituted β,β-difunctionalized enamines, a class of versatile building blocks for the synthesis of bioactive compounds, is reported.
Collapse
Affiliation(s)
- Pei-Qiang Huang
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Wei Ou
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jian-Liang Ye
- Department of Chemistry
- Fujian Provincial Key Laboratory of Chemical Biology
- iChEM (Collaborative Innovation Center of Chemistry for Energy Materials)
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
13
|
Huang PQ, Huang SY, Gao LH, Mao ZY, Chang Z, Wang AE. Enantioselective total synthesis of (+)-methoxystemofoline and (+)-isomethoxystemofoline. Chem Commun (Camb) 2015; 51:4576-8. [DOI: 10.1039/c4cc09598g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first enantioselective total synthesis of (+)-methoxystemofoline (2) and (+)-isomethoxystemofoline (3). Through this work, the structure of methoxystemofoline was revised as 2 with an 11E-stereochemistry, and its absolute configuration was established.
Collapse
Affiliation(s)
- Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, and Collaborative Innovation Centre of Chemistry for Energy Materials
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Su-Yu Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, and Collaborative Innovation Centre of Chemistry for Energy Materials
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Long-Hui Gao
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, and Collaborative Innovation Centre of Chemistry for Energy Materials
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Zhong-Yi Mao
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, and Collaborative Innovation Centre of Chemistry for Energy Materials
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Zong Chang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, and Collaborative Innovation Centre of Chemistry for Energy Materials
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Ai-E Wang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, and Collaborative Innovation Centre of Chemistry for Energy Materials
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|