1
|
Huangfu X, Wang Z, Chen Y, Wei J, Liu W, Zhang WX. Recent progress on the functionalization of white phosphorus in China. Natl Sci Rev 2024; 11:nwae162. [PMID: 38855361 PMCID: PMC11162153 DOI: 10.1093/nsr/nwae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Direct synthesis of organophosphorus compounds from white phosphorus represents a significant but challenging subject, especially in the context of ongoing efforts to comprehensively improve the phosphorus-derived chemical industry driven by sustainability and safety concerns. China is the world's largest producer of white phosphorus, creating a significant demand for the green transformation of this crucial feedstock. This review provides an overview of advancements in white phosphorus activation by Chinese research teams, focusing on the direct construction of P‒C/N/O/S/M bonds from white phosphorus. Additionally, we offer some insights into prospective directions for the activation and transformation of white phosphorus in the future. This review paper aims to attract more researchers to engage in this area, stimulating follow-up exploration and fostering enduring advances.
Collapse
Affiliation(s)
- Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongzhen Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Maguire OR, Smokers IBA, Oosterom BG, Zheliezniak A, Huck WTS. A Prebiotic Precursor to Life's Phosphate Transfer System with an ATP Analog and Histidyl Peptide Organocatalysts. J Am Chem Soc 2024; 146:7839-7849. [PMID: 38448161 PMCID: PMC10958518 DOI: 10.1021/jacs.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Biochemistry is dependent upon enzyme catalysts accelerating key reactions. At the origin of life, prebiotic chemistry must have incorporated catalytic reactions. While this would have yielded much needed amplification of certain reaction products, it would come at the possible cost of rapidly depleting the high energy molecules that acted as chemical fuels. Biochemistry solves this problem by combining kinetically stable and thermodynamically activated molecules (e.g., ATP) with enzyme catalysts. Here, we demonstrate a prebiotic phosphate transfer system involving an ATP analog (imidazole phosphate) and histidyl peptides, which function as organocatalytic enzyme analogs. We demonstrate that histidyl peptides catalyze phosphorylations via a phosphorylated histidyl intermediate. We integrate these histidyl-catalyzed phosphorylations into a complete prebiotic scenario whereby inorganic phosphate is incorporated into organic compounds though physicochemical wet-dry cycles. Our work demonstrates a plausible system for the catalyzed production of phosphorylated compounds on the early Earth and how organocatalytic peptides, as enzyme precursors, could have played an important role in this.
Collapse
Affiliation(s)
- Oliver R. Maguire
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Iris B. A. Smokers
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Bob G. Oosterom
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Alla Zheliezniak
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| |
Collapse
|
3
|
Guo X, Fu S, Ying J, Zhao Y. Prebiotic chemistry: a review of nucleoside phosphorylation and polymerization. Open Biol 2023; 13:220234. [PMID: 36629018 PMCID: PMC9832566 DOI: 10.1098/rsob.220234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
The phosphorylation of nucleosides and their polymerization are crucial issues concerning the origin of life. The question of how these plausible chemical processes took place in the prebiotic Earth is still perplexing, despite several studies that have attempted to explain these prebiotic processes. The purpose of this article is to review these chemical reactions with respect to chemical evolution in the primeval Earth. Meanwhile, from our perspective, the chiral properties and selection of biomolecules should be considered in the prebiotic chemical origin of life, which may contribute to further research in this field to some extent.
Collapse
Affiliation(s)
- Xiaofan Guo
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, People's Republic of China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, People's Republic of China
| |
Collapse
|
4
|
Wang S, Chen YZ, Fu S, Zhao Y. In silico approaches uncovering the systematic function of N-phosphorylated proteins in human cells. Comput Biol Med 2022; 151:106280. [PMID: 36375414 DOI: 10.1016/j.compbiomed.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Phosphorylation plays a key role in the regulation of protein function. In addition to the extensively studied O-phosphorylation of serine, threonine, and tyrosine, emerging evidence suggests that the non-canonical phosphorylation of histidine, lysine, and arginine termed N-phosphorylation, exists widely in eukaryotes. At present, the study of N-phosphorylation is still in its infancy, and its regulatory role and specific biological functions in mammalian cells are still unknown. Here, we report the in silico analysis of the systematic biological significance of N-phosphorylated proteins in human cells. The protein structural and functional domain enrichment analysis revealed that N-phosphorylated proteins are rich in RNA recognition motif, nucleotide-binding and alpha-beta plait domains. The most commonly enriched biological pathway is the metabolism of RNA. Besides, arginine phosphorylated (pArg) proteins are highly related to DNA repair, while histidine phosphorylated (pHis) proteins may play a role in the regulation of the cell cycle, and lysine phosphorylated (pLys) proteins are linked to cellular stress response, intracellular signal transduction, and intracellular transport, which are of great significance for maintaining cell homeostasis. Protein-protein interaction (PPI) network analysis revealed important hub proteins (i.e., SRSF1, HNRNPA1, HNRNPC, SRSF7, HNRNPH1, SRSF2, SRSF11, HNRNPD, SRRM2 and YBX1) which are closely related to neoplasms, nervous system diseases, and virus infection and have potential as therapeutic targets. Those proteins with clinical significance are worthy of attention, and the rational considerations of N-phosphorylation in occurrence and progression of diseases might be beneficial for further translational applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Songsen Fu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China; Key Lab of Bioorganic Phosphorus Chemistry&Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem J 2021; 478:3575-3596. [PMID: 34624072 DOI: 10.1042/bcj20210533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.
Collapse
|
6
|
Ying J, Ding R, Liu Y, Zhao Y. Prebiotic Chemistry in Aqueous Environment: A Review of Peptide Synthesis and Its Relationship with Genetic Code. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianxi Ying
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
| | - Ruiwen Ding
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
| | - Yan Liu
- College of Chemistry and Chemical Engineering Xiamen University, No. 422, Siming South Road Xiamen Fujian 361005 China
| | - Yufen Zhao
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- College of Chemistry and Chemical Engineering Xiamen University, No. 422, Siming South Road Xiamen Fujian 361005 China
| |
Collapse
|
7
|
Huang B, Zhao Z, Zhao Y, Huang S. Protein arginine phosphorylation in organisms. Int J Biol Macromol 2021; 171:414-422. [PMID: 33428953 DOI: 10.1016/j.ijbiomac.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Protein arginine phosphorylation (pArg), a novel molecular switch, plays a key role in regulating cellular processes. The intrinsic acid lability, hot sensitivity, and hot-alkali instability of "high-energy" phosphoamidate (PN bond) in pArg, make the investigation highly difficult and challenging. Recently, the progress in identifying prokaryotic protein arginine kinase/phosphatase and assigning hundreds of pArg proteins and phosphosites has been made, which is arousing scientists' interest and passions. It shows that pArg is tightly connected to bacteria stress response and pathogenicity, and is probably implied in human diseases. In this review, we highlight the strategies for investigation of this mysterious modification and its momentous physiological functions, and also prospect for the potentiality of drugs development targeting pArg-relative pathways.
Collapse
Affiliation(s)
- Biling Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Zhixing Zhao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Shaohua Huang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
8
|
Son J, Baek Y, Kim S, Lee K, Lee PH. Rhodium(
III
)‐Catalyzed N−H Insertion Reaction of Phosphoryl Amides with
α‐Aryl
Diazoesters for the Synthesis of
α‐Phosphoryl
Amino Esters. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jeong‐Yu Son
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Yonghyeon Baek
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Sanghyuck Kim
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Kyungsup Lee
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Phil Ho Lee
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
9
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
|
11
|
Wang T, Zhang P, Hu G, Gao Y, Wu Y, Xu P, Liu Y, Zhao Y. Mixed Anhydrides of Nucleotides and Amino Acids Give Dipeptides: A Model System for Studying the Origin of the Genetic Code? ChemistrySelect 2018. [DOI: 10.1002/slct.201800965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tao Wang
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
| | - Pengbo Zhang
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
| | - Gaobo Hu
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
| | - Yuzhen Gao
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
| | - Yile Wu
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
| | - Pengxiang Xu
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
| | - Yan Liu
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
| | - Yufen Zhao
- Key Laboratory for Chemical Biology of Fujian ProvinceDepartment of Chemistry, College of Chemistry and Chemical EngineeringXiamen University, Xiamen 361005 China
- Institute of Drug Discovery TechnologyNingbo University Ningbo 315211 Zhejiang China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Ying J, Fu S, Li X, Feng L, Xu P, Liu Y, Gao X, Zhao Y. A plausible model correlates prebiotic peptide synthesis with the primordial genetic code. Chem Commun (Camb) 2018; 54:8598-8601. [PMID: 30014068 DOI: 10.1039/c8cc04767g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aminoacyladenylates (5'-aa-AMPs) are key intermediates in peptide synthesis. Here we report analogs of 5'-aa-AMPs, namely nucleotide amidates (aa-N-NMPs), obtained under Hadean conditions. Significantly, dipeptides were detected from the above reactions and their yields varied with different nucleosides through the formation of different aa-N-NMPs. This model provides both prebiotic peptides and the primordial version of the genetic code through reactions that occurred under potentially prebiotic conditions.
Collapse
Affiliation(s)
- Jianxi Ying
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province and High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China. and Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Songsen Fu
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province and High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Xin Li
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province and High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Liubin Feng
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province and High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Pengxiang Xu
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province and High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Yan Liu
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province and High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yufen Zhao
- Department of Chemical Biology, Key Laboratory for Chemical Biology of Fujian Province and High-Field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China. and Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China and Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Lu X, He SJ, Cheng WM, Shi J. Transition-metal-catalyzed C H functionalization for late-stage modification of peptides and proteins. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Selective Formation of Ser-His Dipeptide via Phosphorus Activation. ORIGINS LIFE EVOL B 2018; 48:213-222. [PMID: 29705890 DOI: 10.1007/s11084-018-9556-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
The Ser-His dipeptide is the shortest active peptide. This dipeptide not only hydrolyzes proteins and DNA but also catalyzes the formation of peptides and phosphodiester bonds. As a potential candidate for the prototype of modern hydrolase, Ser-His has attracted increasing attention. To explore if Ser-His could be obtained efficiently in the prebiotic condition, we investigated the reactions of N-DIPP-Ser with His or other amino acids in an aqueous system. We observed that N-DIPP-Ser incubated with His can form Ser-His more efficiently than with other amino acids. A synergistic effect involving the two side chains of Ser and His is presumed to be the critical factor for the selectivity of this specific peptide formation.
Collapse
|
15
|
The Dynamic Nature of Phosphorus. Chem 2017. [DOI: 10.1016/j.chempr.2017.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Karki M, Gibard C, Bhowmik S, Krishnamurthy R. Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water. Life (Basel) 2017; 7:E32. [PMID: 28758921 PMCID: PMC5617957 DOI: 10.3390/life7030032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/02/2022] Open
Abstract
Phosphorylation under plausible prebiotic conditions continues to be one of the defining issues for the role of phosphorus in the origins of life processes. In this review, we cover the reactions of alternative forms of phosphate, specifically the nitrogenous versions of phosphate (and other forms of reduced phosphorus species) from a prebiotic, synthetic organic and biochemistry perspective. The ease with which such amidophosphates or phosphoramidate derivatives phosphorylate a wide variety of substrates suggests that alternative forms of phosphate could have played a role in overcoming the "phosphorylation in water problem". We submit that serious consideration should be given to the search for primordial sources of nitrogenous versions of phosphate and other versions of phosphorus.
Collapse
Affiliation(s)
- Megha Karki
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Clémentine Gibard
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Subhendu Bhowmik
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA.
| |
Collapse
|
17
|
Zhang S, Shi J, Shan C, Huang C, Wu Y, Ding R, Xue Y, Liu W, Zhou Q, Zhao Y, Xu P, Gao X. Stable isotope N -phosphoryl amino acids labeling for quantitative profiling of amine-containing metabolites using liquid chromatography mass spectrometry. Anal Chim Acta 2017; 978:24-34. [DOI: 10.1016/j.aca.2017.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022]
|
18
|
Chen P, Sun Y, Wu Y, Liu LL, Zhu J, Zhao Y. A theoretical study on the mechanism of ruthenium(ii)-catalyzed phosphoryl-directed ortho-selective C–H bond activations: the phosphoryl hydroxy group triggered Ru(ii)/Ru(0) catalytic cycle. Org Chem Front 2017. [DOI: 10.1039/c7qo00240h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical study on the mechanism of ruthenium(ii)-catalyzed phosphoryl-directed ortho-selective C–H bond activations has been reported.
Collapse
Affiliation(s)
- Peng Chen
- Department of Chemical Biology
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
| | - Ying Sun
- Department of Chemical Biology
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
| | - Yile Wu
- Department of Chemical Biology
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
| | - Liu Leo Liu
- Department of Chemical Biology
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yufen Zhao
- Department of Chemical Biology
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- Xiamen University
| |
Collapse
|
19
|
Hodgson DR. Physicochemical Aspects of Aqueous and Nonaqueous Approaches to the Preparation of Nucleosides, Nucleotides and Phosphate Ester Mimics. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.apoc.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Liu LL, Chen P, Sun Y, Wu Y, Chen S, Zhu J, Zhao Y. Mechanism of Nickel-Catalyzed Selective C-N Bond Activation in Suzuki-Miyaura Cross-Coupling of Amides: A Theoretical Investigation. J Org Chem 2016; 81:11686-11696. [PMID: 27809510 DOI: 10.1021/acs.joc.6b02093] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In textbooks, the low reactivity of amides is attributed to the strong resonance stability. However, Garg and co-workers recently reported the Ni-catalyzed activation of robust amide C-N bonds, leading to conversions of amides into esters, ketones, and other amides with high selectivity. Among them, the Ni-catalyzed Suzuki-Miyaura coupling (SMC) of N-benzyl-N-tert-butoxycarbonyl (N-Bn-N-Boc) amides with pinacolatoboronate (PhBpin) was performed in the presence of K3PO4 and water. Water significantly enhanced the reaction. With the aid of density functional theory (DFT) calculations, the present study explored the mechanism of the aforementioned SMC reaction as well as analyzed the weakening of amide C-N bond by N-functionalization. The most favorable pathway includes four basic steps: oxidative addition, protonation, transmetalation, and reductive elimination. Comparing the base- and water-free process, the transmetalation step with the help of K3PO4 and water is significantly more facile. Water efficiently protonates the basic N(Boc) (Bn) group to form a neutral HN(Boc) (Bn), which is easily removed. The transmetalation step is the rate-determining step with an energy barrier of 25.6 kcal/mol. Further, a DFT prediction was carried out to investigate the full catalytic cycle of a cyclic (amino) (aryl)carbene in the Ni-catalyzed SMC of amides, which provided clues for further design of catalysts.
Collapse
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Peng Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Ying Sun
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Yile Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Su Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Jun Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| |
Collapse
|
21
|
Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)H functionalization. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Ouyang H, Fu C, Fu S, Ji Z, Sun Y, Deng P, Zhao Y. Development of a stable phosphoarginine analog for producing phosphoarginine antibodies. Org Biomol Chem 2016; 14:1925-9. [DOI: 10.1039/c5ob02603b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
pAIE is designed and synthesized as a stable analog and bioisostere of acid-labile pArg, to produce pArg specific antibodies, facilitating the detection of protein arginine phosphorylation.
Collapse
Affiliation(s)
- Han Ouyang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Chuan Fu
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Songsen Fu
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Zhe Ji
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Ying Sun
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Peiran Deng
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yufen Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|