1
|
Salzburger M, Saragi RT, Wensink FJ, Cunningham EM, Beyer MK, Bakker JM, Ončák M, van der Linde C. Carbon Dioxide and Water Activation by Niobium Trioxide Anions in the Gas Phase. J Phys Chem A 2023; 127:3402-3411. [PMID: 37040467 PMCID: PMC10123662 DOI: 10.1021/acs.jpca.3c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Transition metals are important in various industrial applications including catalysis. Due to the current concentration of CO2 in the atmosphere, various ways for its capture and utilization are investigated. Here, we study the activation of CO2 and H2O at [NbO3]- in the gas phase using a combination of infrared multiple photon dissociation spectroscopy and density functional theory calculations. In the experiments, Fourier-transform ion cyclotron resonance mass spectrometry is combined with tunable IR laser light provided by the intracavity free-electron laser FELICE or optical parametric oscillator-based table-top laser systems. We present spectra of [NbO3]-, [NbO2(OH)2]-, [NbO2(OH)2]-(H2O) and [NbO(OH)2(CO3)]- in the 240-4000 cm-1 range. The measured spectra and observed dissociation channels together with quantum chemical calculations confirm that upon interaction with a water molecule, [NbO3]- is transformed to [NbO2(OH)2]- via a barrierless reaction. Reaction of this product with CO2 leads to [NbO(OH)2(CO3)]- with the formation of a [CO3] moiety.
Collapse
Affiliation(s)
- Magdalena Salzburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Rizalina T Saragi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Frank J Wensink
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Lu JB, Jiang XL, Wang JQ, Hu HS, Schwarz WHE, Li J. On the highest oxidation states of the actinoids in AnO 4 molecules (An = Ac - Cm): A DMRG-CASSCF study. J Comput Chem 2023; 44:190-198. [PMID: 35420170 DOI: 10.1002/jcc.26856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/31/2022]
Abstract
Actinoid tetroxide molecules AnO4 (An = Ac - Cm) are investigated with the ab initio density matrix renormalization group (DMRG) approach. Natural orbital shapes are used to read out the oxidation state (OS) of the f-elements, and the atomic orbital energies and radii are used to explain the trends. The highest OSs reveal a "volcano"-type variation: For An = Ac - Np, the OSs are equal to the number of available valence electrons, that is, AcIII , ThIV , PaV , UVI , and NpVII . Starting with plutonium as the turning point, the highest OSs in the most stable AnO4 isomers then decrease as PuV , AmV , and CmIII , indicating that the 5f-electrons are hard to be fully oxidized off from Pu onward. The variations are related to the actinoid contraction and to the 5f-covalency characteristics. Combined with previous work on OSs, we review their general trends throughout the periodic table, providing fundamental understanding of OS-relevant phenomena.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Xue-Lian Jiang
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen
| | - Jia-Qi Wang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing.,Theoretische Chemie, Fachbereich Chemie und Biologie, Universität Siegen, Siegen, Germany
| | - Jun Li
- Departmentof Chemistry, Southern University of Science and Technology, Shenzhen.,Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, Beijing
| |
Collapse
|
3
|
Zhu C, Liang JX, Wang YG, Li J. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Rice NT, Popov IA, Carlson RK, Greer SM, Boggiano AC, Stein BW, Bacsa J, Batista ER, Yang P, La Pierre HS. Spectroscopic and electrochemical characterization of a Pr 4+ imidophosphorane complex and the redox chemistry of Nd 3+ and Dy 3+ complexes. Dalton Trans 2022; 51:6696-6706. [PMID: 35412547 DOI: 10.1039/d2dt00758d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr3+(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (1-Pr(NP*)) with AgI at -35 °C. The Pr4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln3+(NP(1,2-bis-tBu-diamidoethane)(NEt2))4] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex.
Collapse
Affiliation(s)
- Natalie T Rice
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Ivan A Popov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. .,Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA
| | - Rebecca K Carlson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Samuel M Greer
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Andrew C Boggiano
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Benjamin W Stein
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA. .,Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
5
|
Wang ZL, Chen TT, Chen WJ, Li WL, Zhao J, Jiang XL, Li J, Wang LS, Hu HS. The smallest 4f-metalla-aromatic molecule of cyclo-PrB 2− with Pr–B multiple bonds. Chem Sci 2022; 13:10082-10094. [PMID: 36128247 PMCID: PMC9430590 DOI: 10.1039/d2sc02852b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
The concept of metalla-aromaticity proposed by Thorn–Hoffmann (Nouv. J. Chim. 1979, 3, 39) has been expanded to organometallic molecules of transition metals that have more than one independent electron-delocalized system. Lanthanides, with highly contracted 4f atomic orbitals, are rarely found in multiply aromatic systems. Here we report the discovery of a doubly aromatic triatomic lanthanide-boron molecule PrB2− based on a joint photoelectron spectroscopy and quantum chemical investigation. Global minimum structural searches reveal that PrB2− has a C2v triangular structure with a paramagnetic triplet 3B2 electronic ground state, which can be viewed as featuring a trivalent Pr(III,f2) and B24−. Chemical bonding analyses show that this cyclo-PrB2− species is the smallest 4f-metalla-aromatic system exhibiting σ and π double aromaticity and multiple Pr–B bonding characters. It also sheds light on the formation of the rare B24− tetraanion by the high-lying 5d orbitals of the 4f-elements, completing the isoelectronic B24−, C22−, N2, and O22+ series. We report the smallest 4f-metalla-aromatic molecule of PrB2− exhibiting σ and π double aromaticity and multiple Pr–B bond characters.![]()
Collapse
Affiliation(s)
- Zhen-Ling Wang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Teng-Teng Chen
- Department of Chemistry, Brown University, Providence 02912, Rhode Island, USA
| | - Wei-Jia Chen
- Department of Chemistry, Brown University, Providence 02912, Rhode Island, USA
| | - Wan-Lu Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Jing Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xue-Lian Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence 02912, Rhode Island, USA
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Infrared spectroscopic and density functional theoretical study on the binary rhodium–oxygen Rh2O9+ cation. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Xu XC, Zhao XK, Hu HS. Ligands enhanced the Ac[triple bond, length as m-dash]Ac triple bond. Phys Chem Chem Phys 2021; 23:10244-10250. [PMID: 33885071 DOI: 10.1039/d1cp00014d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The multiple bonds between actinide atoms and their derivatives are computationally investigated extensively and compounds with an unsupported actinide-actinide bond, especially in low oxidation states, have attracted great attention. Herein, high level relativistic quantum chemical methods are used to probe the Ac-Ac bonding in compounds with a general formula LAcAcL (L = AsH3, PH3, NH3, H, CO, NO) at both scalar and spin-orbit coupling relativistic levels. H3AsAcAcAsH3, H3PAcAcPH3 and OCAcAcCO compounds show a type of zero valence Ac[triple bond, length as m-dash]Ac triple bond with a 1σ2g1π4u configuration, and H3AsAcAcAsH3 has been found to have the shortest Ac-Ac bond length of 3.012 Å reported so far. The Ac2 unit is very sensitive to the σ donor ligands and can form triple, double and even single bonds when suitable ligands are introduced, up to 3.652 Å with an Ac-Ac single bond in H3NAcAcNH3.
Collapse
Affiliation(s)
- Xiao-Cheng Xu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Xiao-Kun Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Quan Y, Zhao Y. Density Functional Theoretical Study on the Electronic Structure of Rh 2O 7 + with Low Oxidation States. ACS OMEGA 2020; 5:19422-19428. [PMID: 32803035 PMCID: PMC7424573 DOI: 10.1021/acsomega.0c01321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Rh2O n + (n = 2-10) species are prepared by the reaction of the laser-ablated rhodium atoms with oxygen; furthermore, they are characterized by employing time-of-flight mass spectroscopy. To reveal the stable electronic structure, in this study, we performed the density functional theory calculations for the possible isomers of Rh2O7 +. A total of 29 geometries were obtained including cyclic Rh2O3, cyclic Rh2O2, and ring-opening structures with doublet, quartet, sextet, and octet states. It is noteworthy that no Rh-Rh bond was observed for all the optimized Rh2O7 + isomers including oxides, peroxides, superoxides, and oxygen groups. The optimized geometries were also confirmed to exhibit minimum structural energies by employing harmonic frequency analysis at the same energy level. Generally, two types of oxygen-bridged geometries were discovered with cyclic and pseudo-linear Rh2O7 +, which contained one or more than one O2 groups. It is concluded that the cyclic structure comprises a lower energy than that observed in pseudo-linear structures. In addition, Rh2O7 + tends to be unstable when the coordination groups change from O2 to O2 - unit. Finally, the localized orbital bonding analysis indicates that Rh has oxidation states of 1 or 2 in cyclic Rh2O7 + structures; this is true even in the presence of O2-, O2 -, and O2 2- groups.
Collapse
|
9
|
Abstract
AbstractThe past decade has been very productive in the field of actinide (An) oxides containing high-valent An. Novel gas-phase experimental and an impressive number of theoretical studies have been performed, mostly on pure oxides or oxides extended with other ligands. The review covers the structural properties of molecular An oxides with high (An≥V) oxidation states. The presented compounds include the actinide dioxide cations [AnO2]+ and [AnO2]2+, neutral and ionic AnOx (x = 3–6), oxides with more than one An atom like neutral dimers, trimers and dimers from cation–cation interactions, as well as large U-oxide clusters observed very recently in the gaseous phase.
Collapse
|
10
|
Gompa TP, Ramanathan A, Rice NT, La Pierre HS. The chemical and physical properties of tetravalent lanthanides: Pr, Nd, Tb, and Dy. Dalton Trans 2020; 49:15945-15987. [DOI: 10.1039/d0dt01400a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thermochemistry, descriptive chemistry, spectroscopy, and physical properties of the tetravalent lanthanides (Pr, Nd, Tb and Dy) in extended phases, gas phase, solution, and as isolable molecular complexes are presented.
Collapse
Affiliation(s)
- Thaige P. Gompa
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Arun Ramanathan
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Natalie T. Rice
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Henry S. La Pierre
- Department of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- Nuclear and Radiological Engineering Program
| |
Collapse
|
11
|
Zhang WJ, Wang GJ, Zhang P, Zou W, Hu SX. The decisive role of 4f-covalency in the structural direction and oxidation state of XPrO compounds (X: group 13 to 17 elements). Phys Chem Chem Phys 2020; 22:27746-27756. [PMID: 33242323 DOI: 10.1039/d0cp04700g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lanthanide oxo compounds are of vital importance in lanthanide chemistry, as well as in environmental and materials sciences. Praseodymium, as an exceptional element in lanthanides which can form a +V formal oxidation state (OSf) besides the dominant +III among the 4f-block element, displays the significant participation of the Pr 4f orbitals in bonding interactions which is commonly crucial in stabilizing the high oxidation state of Pr in PrO2+ and NPrO species. Here, we report a systematic theoretical study on the structures and stabilities of a series of XPrO (X: B, Al, C, Si, N, P, As, O, S, F, Cl) compounds along with [XPrO]+ cation (X: O, S) and [X3PrO] complexes (X: F and Cl). This work reveals that Pr is able to achieve the lowest and highest OSf and the OSf exhibits periodic variation from +I in BOPr and AlOPr to +II in SiOPr to +III in CPrO, FPrO, ClPrO and AsPrO to +IV in OPrO and SPrO and even to +V in NPrO, [OPrO]+, [SPrO]+, F3PrO and Cl3PrO. We found that the molecular structures are correlated to the Pr oxidation state due to the highly important 4f orbital in the chemical bonding of the high oxidation state compounds. Thus, not only the electronegativity of the ligand but also the quasi-degenerate Pr valence 4f orbitals, namely energetic covalency, control the oxidation state and play a fundamental role in affecting the electronic structural stability of Pr(v) compounds as well. This work demonstrates the structurally directing role of the f-orbital in the formation of the linear structure and is constructive for achieving the higher oxidation state of a given element by tuning the ligand.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- Beijing Computational Science Research Center, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
12
|
Chen X, Chen TT, Li WL, Lu JB, Zhao LJ, Jian T, Hu HS, Wang LS, Li J. Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters. Inorg Chem 2018; 58:411-418. [DOI: 10.1021/acs.inorgchem.8b02572] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Teng-Teng Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Wan-Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Li-Juan Zhao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Tian Jian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Li WL, Ertural C, Bogdanovski D, Li J, Dronskowski R. Chemical Bonding of Crystalline LnB6 (Ln = La–Lu) and Its Relationship with Ln2B8 Gas-Phase Complexes. Inorg Chem 2018; 57:12999-13008. [DOI: 10.1021/acs.inorgchem.8b02263] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wan-Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Christina Ertural
- Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Dimitri Bogdanovski
- Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Richard Dronskowski
- Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| |
Collapse
|
14
|
Liu JB, Chen GP, Huang W, Clark DL, Schwarz WHE, Li J. Bonding trends across the series of tricarbonato-actinyl anions [(AnO 2)(CO 3) 3] 4- (An = U-Cm): the plutonium turn. Dalton Trans 2018; 46:2542-2550. [PMID: 28154870 DOI: 10.1039/c6dt03953g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actinyl-tricarbonato anions [(AnO2)(CO3)3]4- (An = U-Cm) in various environments were investigated using theoretical approaches of quantum-mechanics, molecular-mechanics and cluster-models. Cations and solvent molecules in the 2nd coordination sphere affect the equatorial An←Oeq bonds more than the axial An[triple bond, length as m-dash]Oax bonds. Common actinide contraction is found for calculated and experimental axial bond lengths of 92U to 94Pu, though no longer for 94Pu to 96Cm. The tendency of U to Pu forming actinyl(vi) species dwindles away toward Cm, which already features the preferred AnIII/LnIII oxidation state of the later actinides and all lanthanides. The well known change from d-type to typical U-Pu-Cm type and then to f-type behavior is labeled as the plutonium turn, a phenomenon that is caused by f-orbital energy-decrease and f-orbital localization with increase of both nuclear charge and oxidation state, and a non-linear variation of effective f-electron population across the actinide series. Both orbital and configuration mixing and occupation of antibonding 5f type orbitals increase, weakening the AnOax bonds and reducing the highest possible oxidation states of the later actinides.
Collapse
Affiliation(s)
- Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China and Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Guo P Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - David L Clark
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China. and Physical and Theoretical Chemistry, University of Siegen, 57068, Germany
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China. and Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
15
|
Huang W, Jiang N, Schwarz WHE, Yang P, Li J. Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements. Chemistry 2017; 23:10580-10589. [PMID: 28516506 DOI: 10.1002/chem.201701117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 11/11/2022]
Abstract
The geometric and electronic ground-state structures of 30 isomers of six MS4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS4 species were compared to analogous MO4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet Td geometric species (Os,Hs)S4 and (Ru,Os,Hs)O4 , whereas a low MOS of two appeared in the high-spin septet D2d species Fe(S2 )2 and (slightly excited) metastable Fe(O2 )2 . The ground states of all other molecules had intermediate MOS values, with S2- , S22- , S21- (and O2- , O1- , O22- , O21- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO4 and MS4 species provides insight into the periodicity of oxidation states and bonding.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - Ning Jiang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Physical and Theoretical Chemistry, University of Siegen, Siegen, 57068, Germany
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 953002, USA
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P.R. China.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 953002, USA
| |
Collapse
|
16
|
Hu SX, Jian J, Su J, Wu X, Li J, Zhou M. Pentavalent lanthanide nitride-oxides: NPrO and NPrO - complexes with N≡Pr triple bonds. Chem Sci 2017; 8:4035-4043. [PMID: 28580119 PMCID: PMC5434915 DOI: 10.1039/c7sc00710h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
The neutral molecule NPrO and its anion NPrO- are produced via co-condensation of laser-ablated praseodymium atoms with nitric oxide in a solid neon matrix. Combined infrared spectroscopy and state-of-the-art quantum chemical calculations confirm that both species are pentavalent praseodymium nitride-oxides with linear structures that contain Pr≡N triple bonds and Pr=O double bonds. Electronic structure studies show that the neutral NPrO molecule features a 4f0 electron configuration and a Pr(v) oxidation state similar to that of the isoelectronic PrO2+ ion, while its NPrO- anion possesses a 4f1 electron configuration and a Pr(iv) oxidation state. The neutral NPrO molecule is thus a rare lanthanide nitride-oxide species with a Pr(v) oxidation state, which follows the recent identification of the first Pr(v) oxidation state in the PrO2+ and PrO4 complexes (Angew. Chem. Int. Ed., 2016, 55, 6896). This finding indicates that lanthanide compounds with oxidation states of higher than +IV are richer in chemistry than previously recognized.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Beijing Computational Science Research Center , Beijing 100094 , China.,Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education , Tsinghua University , Beijing 100084 , China .
| | - Jiwen Jian
- Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Jing Su
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education , Tsinghua University , Beijing 100084 , China .
| | - Xuan Wu
- Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education , Tsinghua University , Beijing 100084 , China .
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials , Department of Chemistry , Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials , Fudan University , Shanghai 200433 , China .
| |
Collapse
|
17
|
Zhang Q, Hu SX, Qu H, Su J, Wang G, Lu JB, Chen M, Zhou M, Li J. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides. Angew Chem Int Ed Engl 2016; 55:6896-900. [PMID: 27100273 DOI: 10.1002/anie.201602196] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/11/2022]
Abstract
The chemistry of lanthanides (Ln=La-Lu) is dominated by the low-valent +3 or +2 oxidation state because of the chemical inertness of the valence 4f electrons. The highest known oxidation state of the whole lanthanide series is +4 for Ce, Pr, Nd, Tb, and Dy. We report the formation of the lanthanide oxide species PrO4 and PrO2 (+) complexes in the gas phase and in a solid noble-gas matrix. Combined infrared spectroscopic and advanced quantum chemistry studies show that these species have the unprecedented Pr(V) oxidation state, thus demonstrating that the pentavalent state is viable for lanthanide elements in a suitable coordination environment.
Collapse
Affiliation(s)
- Qingnan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Shu-Xian Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Hui Qu
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jing Su
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Mohua Chen
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Zhang Q, Hu SX, Qu H, Su J, Wang G, Lu JB, Chen M, Zhou M, Li J. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingnan Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Shu-Xian Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Hui Qu
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Jing Su
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Mohua Chen
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials; Fudan University; Shanghai 200433 China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Tsinghua University; Beijing 100084 China
| |
Collapse
|
19
|
Huang W, Xu WH, Schwarz WHE, Li J. On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu). Inorg Chem 2016; 55:4616-25. [PMID: 27074099 DOI: 10.1021/acs.inorgchem.6b00442] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Wen-Hua Xu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - W H E Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
20
|
Huang W, Xing DH, Lu JB, Long B, Schwarz WHE, Li J. How Much Can Density Functional Approximations (DFA) Fail? The Extreme Case of the FeO4 Species. J Chem Theory Comput 2016; 12:1525-33. [PMID: 26938575 DOI: 10.1021/acs.jctc.5b01040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thorough theoretical study of the relative energies of various molecular Fe·4O isomers with different oxidation states of both Fe and O atoms is presented, comparing simple Hartree-Fock through many Kohn-Sham approximations up to extended coupled cluster and DMRG multiconfiguration benchmark methods. The ground state of Fe·4O is a singlet, hexavalent iron(VI) complex (1)C2v-[Fe(VI)O2](2+)(O2)(2-), with isomers of oxidation states Fe(II), Fe(III), Fe(IV), Fe(V), and Fe(VIII) all lying slightly higher within the range of 1 eV. The disputed existence of oxidation state Fe(VIII) is discussed for isolated FeO4 molecules. Density functional theory (DFT) at various DF approximation (DFA) levels of local and gradient approaches, Hartree-Fock exchange and meta hybrids, range dependent, DFT-D and DFT+U models do not perform better for the relative stabilities of the geometric and electronic Fe·4O isomers than within 1-5 eV. The Fe·4O isomeric species are an excellent testing and validation ground for the development of density functional and wave function methods for strongly correlated multireference states, which do not seem to always follow chemical intuition.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Deng-Hui Xing
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Bo Long
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - W H Eugen Schwarz
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
21
|
Lu JB, Jian J, Huang W, Lin H, Li J, Zhou M. Experimental and theoretical identification of the Fe(vii) oxidation state in FeO4−. Phys Chem Chem Phys 2016; 18:31125-31131. [DOI: 10.1039/c6cp06753k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two isomers of iron tetraoxygen anion, dioxoiron peroxide [(η2-O2)FeO2]− and tetroxide FeO4− were characterized by experiment and theoretical calculations, with heptavalent Fe(vii) oxidation state identified in the later.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Jiwen Jian
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials
- Fudan University
- Shanghai 200433
| | - Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Hailu Lin
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials
- Fudan University
- Shanghai 200433
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Tsinghua University
- Beijing 100084
- China
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials
- Department of Chemistry
- Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|
22
|
Huang W, Pyykkö P, Li J. Is Octavalent Pu(VIII) Possible? Mapping the Plutonium Oxyfluoride Series PuO(n)F(8-2n) (n = 0-4). Inorg Chem 2015; 54:8825-31. [PMID: 26309065 DOI: 10.1021/acs.inorgchem.5b01540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the oxidation state Pu(VIII) is shown to be less stable than Pu(V) in the PuO4 molecule, it is not clear if the more electronegative fluorine can help to stabilize Pu(VIII). Our calculations on PuO(n)F(8-2n) (n = 0-4) molecules notably confirm that PuO2F4 has both (1)D(4h) and (5)C(2v) minima with the oxidation states Pu(VIII) and Pu(V), respectively, with the latter having lower energy. The hybrid-DFT, CCSD(T), and CASSCF methods all give the same result. The results conform to a superoxide ligand when n ≥ 2. PuF8 in a (1)O(h) state can decompose to PuF6 and F2, and PuOF6 in a (1)C(2v) state also can break down to PuF6 and 1/2 O2. The Pu(VIII) anion PuO2F5(-) does have a D(5h) minimum, which also lies above a (5)C(2v) Pu(V) peroxide structure. However, the energy differences between the different minima are not large, indicating that metastable species with oxidation states higher than Pu(V) cannot be completely excluded.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University , 100084 Beijing, People's Republic of China
| | - Pekka Pyykkö
- Department of Chemistry, University of Helsinki , POB 55, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University , 100084 Beijing, People's Republic of China
| |
Collapse
|