1
|
Waltho A, Sommer T. Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions. Methods Mol Biol 2023; 2602:19-38. [PMID: 36446964 DOI: 10.1007/978-1-0716-2859-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nearly 20 years since the first branched ubiquitin (Ub) chains were identified by mass spectrometry, our understanding of these chains and their function is still evolving. This is due to the limitations of classical Ub research techniques in identifying these chains and the vast complexity of potential branched chains. Considering only lysine or N-terminal methionine attachment sites, there are already 28 different possible branch points. Taking into account recently discovered ester-linked ubiquitination, branch points of more than two linkage types, and the higher-order chain structures within which branch points exist, the diversity of branched chains is nearly infinite. This review breaks down the complexity of these chains into their general functions, what we know so far about the different linkage combinations, branched chain-optimized methodologies, and the future perspectives of branched chain research.
Collapse
Affiliation(s)
- Anita Waltho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Simultaneous capture of ISG15 conjugating and deconjugating enzymes using a semi-synthetic ISG15-Dha probe. Sci China Chem 2023; 66:837-844. [PMID: 36684644 PMCID: PMC9840423 DOI: 10.1007/s11426-022-1455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 01/15/2023]
Abstract
ISG15 is a ubiquitin-like (Ubl) protein attached to substrate proteins by ISG15 conjugating enzymes whose dysregulation is implicated in a multitude of disease processes, but the probing of these enzymes remains to be accomplished. Here, we describe the development of a new activity-based probe ISG15-Dha (dehydroalanine) through protein semi-synthesis. In vitro cross-linking and cell lysate proteomic profiling experiments showed that this probe can sequentially capture ISG15 conjugating enzymes including E1 enzyme UBA7, E2 enzyme UBE2L6, E3 enzyme HERC5, the previously known ISG15 deconjugating enzyme (USP18), as well as some other enzymes (USP5 and USP14) which we additionally confirmed to impart deISGylation activity. Collectively, ISG15-Dha provides a new tool that can simultaneously capture ISG15 conjugating and deconjugating enzymes for biochemical or pharmacological studies. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s11426-022-1455-x and is accessible for authorized users.
Collapse
|
3
|
Wang YS, Wu KP, Jiang HK, Kurkute P, Chen RH. Branched Ubiquitination: Detection Methods, Biological Functions and Chemical Synthesis. Molecules 2020; 25:E5200. [PMID: 33182242 PMCID: PMC7664869 DOI: 10.3390/molecules25215200] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitination is a versatile posttranslational modification that elicits signaling roles to impact on various cellular processes and disease states. The versatility is a result of the complexity of ubiquitin conjugates, ranging from a single ubiquitin monomer to polymers with different length and linkage types. Recent studies have revealed the abundant existence of branched ubiquitin chains in which one ubiquitin molecule is connected to two or more ubiquitin moieties in the same ubiquitin polymer. Compared to the homotypic ubiquitin chain, the branched chain is recognized or processed differently by readers and erasers of the ubiquitin system, respectively, resulting in a qualitative or quantitative alteration of the functional output. Furthermore, certain types of branched ubiquitination are induced by cellular stresses, implicating their important physiological role in stress adaption. In addition, the current chemical methodologies of solid phase peptide synthesis and expanding genetic code approach have been developed to synthesize different architectures of branched ubiquitin chains. The synthesized branched ubiquitin chains have shown their significance in understanding the topologies and binding partners of the branched chains. Here, we discuss the recent progresses on the detection, functional characterization and synthesis of branched ubiquitin chains as well as the future perspectives of this emerging field.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Prashant Kurkute
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (H.-K.J.); (P.K.)
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Sui X, Wang Y, Du YX, Liang LJ, Zheng Q, Li YM, Liu L. Development and application of ubiquitin-based chemical probes. Chem Sci 2020; 11:12633-12646. [PMID: 34123237 PMCID: PMC8163311 DOI: 10.1039/d0sc03295f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein ubiquitination regulates almost every process in eukaryotic cells. The study of the many enzymes involved in the ubiquitination system and the development of ubiquitination-associated therapeutics are important areas of current research. Synthetic tools such as ubiquitin-based chemical probes have been making an increasing contribution to deciphering various biochemical components involved in ubiquitin conjugation, recruitment, signaling, and deconjugation. In the present minireview, we summarize the progress of ubiquitin-based chemical probes with an emphasis on their various structures and chemical synthesis. We discuss the utility of the ubiquitin-based chemical probes for discovering and profiling ubiquitin-dependent signaling systems, as well as the monitoring and visualization of ubiquitin-related enzymatic machinery. We also show how the probes can serve to elucidate the molecular mechanism of recognition and catalysis. Collectively, the development and application of ubiquitin-based chemical probes emphasizes the importance and utility of chemical protein synthesis in modern chemical biology. This article reviews the design, synthesis, and application of different classes of Ub-based chemical probes.![]()
Collapse
Affiliation(s)
- Xin Sui
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China .,Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Yun-Xiang Du
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
5
|
Zheng Q, Wang T, Chu G, Zuo C, Zhao R, Sui X, Ye L, Yu Y, Chen J, Wu X, Zhang W, Deng H, Shi J, Pan M, Li Y, Liu L. An E1‐Catalyzed Chemoenzymatic Strategy to Isopeptide‐
N
‐Ethylated Deubiquitylase‐Resistant Ubiquitin Probes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Guo‐Chao Chu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rui Zhao
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xin Sui
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Linzhi Ye
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuanyuan Yu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jingnan Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Xiangwei Wu
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Jing Shi
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Man Pan
- Department of Biochemistry and Molecular Biology University of Chicago Chicago IL 60637 USA
| | - Yi‐Ming Li
- School of Food and Biological Engineering Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Hua X, Chu GC, Li YM. The Ubiquitin Enigma: Progress in the Detection and Chemical Synthesis of Branched Ubiquitin Chains. Chembiochem 2020; 21:3313-3318. [PMID: 32621561 DOI: 10.1002/cbic.202000295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitin chains with distinct topologies play essential roles in eukaryotic cells. Recently, it was discovered that multiple ubiquitin units can be ligated to more than one lysine residue in the same ubiquitin to form diverse branched ubiquitin chains. Although there is increasing evidence implicating these branched chains in a plethora of biological functions, few mechanistic details have been elucidated. This concept article introduces the function, detection and chemical synthesis of branched ubiquitin chains; and offers some future perspective for this exciting new field.
Collapse
Affiliation(s)
- Xiao Hua
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Chao Chu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases, Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
|
8
|
Zheng Q, Wang T, Chu GC, Zuo C, Zhao R, Sui X, Ye L, Yu Y, Chen J, Wu X, Zhang W, Deng H, Shi J, Pan M, Li YM, Liu L. An E1-Catalyzed Chemoenzymatic Strategy to Isopeptide-N-Ethylated Deubiquitylase-Resistant Ubiquitin Probes. Angew Chem Int Ed Engl 2020; 59:13496-13501. [PMID: 32346954 DOI: 10.1002/anie.202002974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/12/2020] [Indexed: 12/22/2022]
Abstract
Triazole-based deubiquitylase (DUB)-resistant ubiquitin (Ub) probes have recently emerged as effective tools for the discovery of Ub chain-specific interactors in proteomic studies, but their structural diversity is limited. A new family of DUB-resistant Ub probes is reported based on isopeptide-N-ethylated dimeric or polymeric Ub chains, which can be efficiently prepared by a one-pot, ubiquitin-activating enzyme (E1)-catalyzed condensation reaction of recombinant Ub precursors to give various homotypic and even branched Ub probes at multi-milligram scale. Proteomic studies using label-free quantitative (LFQ) MS indicated that the isopeptide-N-ethylated Ub probes may complement the triazole-based probes in the study of Ub interactome. Our study highlights the utility of modern protein synthetic chemistry to develop structurally and new families of tool molecules needed for proteomic studies.
Collapse
Affiliation(s)
- Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guo-Chao Chu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Rui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Sui
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Linzhi Ye
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Yu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingnan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangwei Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Man Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Sui X, Li YM. Development of Ubiquitin Tools for Studies of Complex Ubiquitin Processing Protein Machines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191113161511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Ubiquitination is one of the most extensive post-translational modifications in
eukaryotes and is involved in various physiological processes such as protein degradation,
autophagy, protein interaction, and protein localization. The ubiquitin (Ub)-related protein
machines include Ub-activating enzymes (E1s), Ub-conjugating enzymes (E2s), Ub ligases
(E3s), deubiquitinating enzymes (DUBs), p97, and the proteasomes. In recent years,
the role of DUBs has been extensively studied and relatively well understood. On the
other hand, the functional mechanisms of the other more complex ubiquitin-processing
protein machines (e.g., E3, p97, and proteasomes) are still to be sufficiently well explored
due to their intricate nature. One of the hurdles facing the studies of these complex protein
machines is the challenge of developing tailor-designed structurally defined model substrates,
which unfortunately cannot be directly obtained using recombinant technology. Consequently, the acquisition
and synthesis of the ubiquitin tool molecules are essential for the elucidation of the functions and
structures of the complex ubiquitin-processing protein machines. This paper aims to highlight recent studies on
these protein machines based on the synthetic ubiquitin tool molecules.
Collapse
Affiliation(s)
- Xin Sui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Chu GC, Hua X, Zuo C, Chen CC, Meng XB, Zhang Z, Fu Y, Shi J, Li YM. Efficient Semi-Synthesis of Atypical Ubiquitin Chains and Ubiquitin-Based Probes Forged by Thioether Isopeptide Bonds. Chemistry 2019; 25:16668-16675. [PMID: 31625216 DOI: 10.1002/chem.201904010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Indexed: 01/24/2023]
Abstract
The development of powerful and general methods to acquire ubiquitin (Ub) chains has prompted the deciphering of Ub-mediated processes. Herein, the cysteine-aminoethylation assisted chemical ubiquitination (CAACU) strategy is extended and improved to enable the efficient semi-synthesis of atypical Ub chain analogues and Ub-based probes. Combining the Cys aminoethylation and the auxiliary-mediated protein ligation, several linkage- and length-defined atypical Ub chains including di-Ubs, K27C-linked tri-Ub, K11/K48C-branched tri-Ub, and even the SUMOlated Ub are successfully prepared from recombinantly expressed starting materials at about a 9-20 mg L-1 expression level. In addition, the utility of this strategy is demonstrated with the synthesis of a novel non-hydrolyzable di-Ub PA probe, which may provide a new useful tool for the mechanistic studies of deubiquitinase (DUB) recognition.
Collapse
Affiliation(s)
- Guo-Chao Chu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiao Hua
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chong Zuo
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for, Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chen-Chen Chen
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for, Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xian-Bin Meng
- National Protein Science Technology Center, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhongping Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for, Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
11
|
Inactivity of YGL082W in vitro due to impairment of conformational change in the catalytic center loop. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9623-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Fan J, Ye Y, Chu G, Zhang Z, Fu Y, Li YM, Shi J. Semisynthesis of Ubiquitin and SUMO-Rhodamine 110-Glycine through Aminolysis of Boc-Protected Thioester Counterparts. J Org Chem 2019; 84:14861-14867. [PMID: 31642325 DOI: 10.1021/acs.joc.9b01529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquitin (Ub)-based fluorescent reagents are crucial to explore the activity of deubiquitinases (DUBs). Ub-Rho110-G is one of the preferred tools, whereas the current synthetic route is time-consuming. Here, we report a new semisynthetic strategy to produce Ub-Rho110-G through direct aminolysis of Boc-protected Ub-Mesna using bisglycyl-rhodamine 110. We also applied this strategy to synthesize active SUMO2-Rho110-G for the first time. Biochemical analysis demonstrated that semisynthetic Ub or SUMO-Rho110-G can be effectively used for the detection of the activity of DUBs or SUMO-specific enzymes.
Collapse
Affiliation(s)
- Jian Fan
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yinshan Ye
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Guochao Chu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Zhongping Zhang
- Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Yao Fu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yi-Ming Li
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Jing Shi
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
13
|
Hua X, Bai JS, Kong YF, Chu GC, Shi J, Li YM. Acid-sensitive auxiliary assisted atypical diubiquitin synthesis exploiting thiol-ene coupling. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Chimeric protein probes for C5a receptors through fusion of the anaphylatoxin C5a core region with a small-molecule antagonist. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9513-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Xu L, Fan J, Wang Y, Zhang Z, Fu Y, Li YM, Shi J. An activity-based probe developed by a sequential dehydroalanine formation strategy targets HECT E3 ubiquitin ligases. Chem Commun (Camb) 2019; 55:7109-7112. [PMID: 31157339 DOI: 10.1039/c9cc03739j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
E3 ligases play a critical role in ubiquitin (Ub) conjugation cascades, and any aberration in their activity is associated with a number of diseases. Advancement in our knowledge of understanding the roles of HECT E3s requires biochemical tools such as activity-based probes (ABPs). In this study we developed a novel dehydroalanine (Dha)-based E2-Ub ABP using a strategy that is a combination of practical hydrazide-based native chemical ligation and sequential Dha formation. The probe could be used for labeling HECT E3s not only in vitro but also in endogenous cellular contexts. Our easy-to-implement method is expected to be useful for the preparation of Dha based Ub family E2 conjugate ABPs.
Collapse
Affiliation(s)
- Ling Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Jian Fan
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China. and School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhongping Zhang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yao Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Jing Shi
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Chu GC, Pan M, Li J, Liu S, Zuo C, Tong ZB, Bai JS, Gong Q, Ai H, Fan J, Meng X, Huang YC, Shi J, Deng H, Tian C, Li YM, Liu L. Cysteine-Aminoethylation-Assisted Chemical Ubiquitination of Recombinant Histones. J Am Chem Soc 2019; 141:3654-3663. [PMID: 30758956 DOI: 10.1021/jacs.8b13213] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone ubiquitination affects the structure and function of nucleosomes through tightly regulated dynamic reversible processes. The efficient preparation of ubiquitinated histones and their analogs is important for biochemical and biophysical studies on histone ubiquitination. Here, we report the CAACU (cysteine-aminoethylation assisted chemical ubiquitination) strategy for the efficient synthesis of ubiquitinated histone analogs. The key step in the CAACU strategy is the installation of an N-alkylated 2-bromoethylamine derivative into a recombinant histone through cysteine aminoethylation, followed by native chemical ligation assisted by Seitz's auxiliary to produce mono- and diubiquitin (Ub) and small ubiquitin-like modifier (SUMO) modified histone analogs. This approach enables the rapid production of modified histones from recombinant proteins at about 1.5-6 mg/L expression. The thioether-containing isopeptide bonds in the products are chemically stable and bear only one atomic substitution in the structure, compared to their native counterparts. The ubiquitinated histone analogs prepared by CAACU can be readily reconstituted into nucleosomes and selectively recognized by relevant interacting proteins. The thioether-containing isopeptide bonds can also be recognized and hydrolyzed by deubiquitinases (DUBs). Cryo-electron microscopy (cryo-EM) of the nucleosome containing H2BKC34Ub indicated that the obtained CAACU histones were of good quality for structural studies. Collectively, this work exemplifies the utility of the CAACU strategy for the simple and efficient production of homogeneous ubiquitinated and SUMOylated histones for biochemical and biophysical studies.
Collapse
Affiliation(s)
- Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry , Tsinghua University , Beijing 100084 , China.,School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes , Hefei University of Technology , Hefei 230009 , China
| | - Man Pan
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | | | | | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry , Tsinghua University , Beijing 100084 , China.,School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes , Hefei University of Technology , Hefei 230009 , China
| | - Ze-Bin Tong
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry , Tsinghua University , Beijing 100084 , China.,School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes , Hefei University of Technology , Hefei 230009 , China
| | - Jing-Si Bai
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes , Hefei University of Technology , Hefei 230009 , China
| | | | - Huasong Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | | | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Yi-Chao Huang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | | | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | | | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes , Hefei University of Technology , Hefei 230009 , China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
17
|
Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9401-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Ai H, Guo Y, Sun D, Liu S, Qi Y, Guo J, Qu Q, Gong Q, Zhao S, Li J, Liu L. Examination of the Deubiquitylation Site Selectivity of USP51 by Using Chemically Synthesized Ubiquitylated Histones. Chembiochem 2018; 20:221-229. [PMID: 30192049 DOI: 10.1002/cbic.201800432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Indexed: 12/25/2022]
Abstract
Histone ubiquitylation and deubiquitylation processes and the mechanisms of their regulation are closely relevant to the field of epigenetics. Recently, the deubiquitylating enzyme USP51 was reported to selectively cleave ubiquitylation on histone H2A at K13 or K15 (i.e., H2AK13Ub and H2AK15Ub), but not at K119 (i.e., H2AK119Ub), in nucleosomes in vivo. To elucidate the mechanism for the selectivity of USP51, we constructed structurally well-defined in vitro protein systems with a ubiquitin modification at precise sites. A total chemical protein synthesis procedure was developed, wherein hydrazide-based native chemical ligation was used to efficiently generate five ubiquitylated histones (H2AK13Ub, H2AK15Ub, H2AK119Ub, H2BK34Ub, and H2BK120Ub). These synthetic ubiquitylated histones were assembled into nucleosomes and subjected to in vitro USP51 deubiquitylation assays. Surprisingly, USP51 did not show preference between H2AK13/15Ub and H2AK119Ub, in contrast to previous in vivo observations. Accordingly, an understanding of the selectivity of USP51 may require consideration of other factors, such as alternative pre-existing histone modifications, competitive reader proteins, or different nucleosome quality among the in vivo extraction nucleosome and the in vitro reconstitution one. Further experiments established that USP51 in vitro could deubiquitylate a nucleosome carrying H2BK120Ub, but not H2BK34Ub. Molecular dynamics simulations suggested that USP51-catalyzed hydrolysis of ubiquitylated nucleosomes was affected by steric hindrance of the isopeptide bond.
Collapse
Affiliation(s)
- Huasong Ai
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yu Guo
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Demeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Sanling Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yunkun Qi
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Jing Guo
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Qingyue Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Suwen Zhao
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Jiabin Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|