1
|
Brisson ERL, Worthington MJH, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chem Soc Rev 2024; 53:1984-2021. [PMID: 38173417 DOI: 10.1039/d1cs01114f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer self-assembly has become a reliable and versatile workhorse to produce polymeric nanomaterials. With appropriate polymer design and monomer selection, polymers can assemble into shapes and morphologies beyond well-studied spherical and cylindrical micellar structures. Steadfast access to anisotropic polymer nanoparticles has meant that the fabrication and application of 2D soft matter has received increasing attention in recent years. In this review, we focus on nanoscale polymer discs, toroids, and platelets: three morphologies that are often interrelated and made from similar starting materials or common intermediates. For each morphology, we illustrate design rules, and group and discuss commonly used self-assembly strategies. We further highlight polymer compositions, fundamental principles and self-assembly conditions that enable precision in bottom-up fabrication strategies. Finally, we summarise potential applications of such nanomaterials, especially in the context of biomedical research and template chemistry and elaborate on future endeavours in this space.
Collapse
Affiliation(s)
- Emma R L Brisson
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Max J H Worthington
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Simran Kerai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
2
|
Sun H, Gao Y, Fan Y, Du J, Jiang J, Gao C. Polymeric Bowl-Shaped Nanoparticles: Hollow Structures with a Large Opening on the Surface. Macromol Rapid Commun 2023; 44:e2300196. [PMID: 37246639 DOI: 10.1002/marc.202300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Polymeric bowl-shaped nanoparticles (BNPs) are anisotropic hollow structures with large openings on the surface, which have shown advantages such as high specific area and efficient encapsulation, delivery and release of large-sized cargoes on demand compared to solid nanoparticles or closed hollow structures. Several strategies have been developed to prepare BNPs based on either template or template-free methods. For instance, despite the widely used self-assembly strategy, alternative methods including emulsion polymerization, swelling and freeze-drying of polymeric spheres, and template-assisted approaches have also been developed. It is attractive but still challenging to fabricate BNPs due to their unique structural features. However, there is still no comprehensive summary of BNPs up to now, which significantly hinders the further development of this field. In this review, the recent progress of BNPs will be highlighted from the perspectives of design strategies, preparation methods, formation mechanisms, and emerging applications. Moreover, the future perspectives of BNPs will also be proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yaning Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yirong Fan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chenchen Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
3
|
Feng X, Yan N, Jin J, Jiang W. Disassembly of Amphiphilic AB Block Copolymer Vesicles in Selective Solvents: A Molecular Dynamics Simulation Study. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Xuan Feng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
4
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Lin S, Sun H, Cornel EJ, Jiang JH, Zhu YQ, Fan Z, Du JZ. Denting Nanospheres with a Short Peptide. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Abstract
In this review, we summarized recent advances in the development and biological applications of polymeric nanoparticles embedded with superparamagnetic iron oxide nanoparticles (SPIONs). Superparamagnetic polymeric nanoparticles include core-shell nanoparticles, superparamagnetic polymeric micelles and superparamagnetic polymersomes. They have potential for various biomedical applications, including magnetic resonance imaging (MRI) contrast agents, drug delivery, detection of bacteria, viruses and proteins, etc. Finally, the challenges in the design and preparation of superparamagnetic nanoparticles towards clinical applications are explored and the prospects in this field are proposed.
Collapse
Affiliation(s)
- Yufen Xiao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | | |
Collapse
|
7
|
Lin S, Wang F, Du J. High-genus multicompartment vesicles evolved from large compound micelles. Polym Chem 2021. [DOI: 10.1039/d1py00654a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-genus multicompartment vesicles (HGMVs) are self-assembled from block copolymers containing fluorescent and photo-responsive azobenzene groups.
Collapse
Affiliation(s)
- Sha Lin
- Department of Orthopedics
- Shanghai Tenth People's Hospital
- Tongji University
- Shanghai
- China
| | - Fangyingkai Wang
- Department of Polymeric Materials
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
- China
| | - Jianzhong Du
- Department of Orthopedics
- Shanghai Tenth People's Hospital
- Tongji University
- Shanghai
- China
| |
Collapse
|
8
|
Sun H, Du J. Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of an Amorphous Poly(amic acid). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Sun
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
9
|
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics,Quaid-i-Azam University Campus, 45320, Islamabad, Pakistan
| |
Collapse
|
10
|
Yang B, Du J. On the origin and regulation of ultrasound responsiveness of block copolymer nanoparticles. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9612-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
|
12
|
Wang X, Liu S, Cao S, Han F, Wang H, Chen H. Tandem Self-Assembly of Block Copolymer: From Vesicles to Stacked Bowls. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaoqing Wang
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Songlin Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shida Cao
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fei Han
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hong Wang
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hongyu Chen
- Institute of Advanced Synthesis and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
13
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Gomes MLS, da Silva Nascimento N, Borsato DM, Pretes AP, Nadal JM, Novatski A, Gomes RZ, Fernandes D, Farago PV, Zanin SMW. Long-lasting anti-platelet activity of cilostazol from poly(ε-caprolactone)-poly(ethylene glycol) blend nanocapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:694-702. [PMID: 30423756 DOI: 10.1016/j.msec.2018.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/20/2018] [Accepted: 10/05/2018] [Indexed: 01/03/2023]
Abstract
Cilostazol (CLZ) acts as a vasodilator and antiplatelet agent and is the main drug for the treatment of intermittent claudication (IC) related to peripheral arterial disease (PAD). The usual oral dose is 100 mg twice a day, which represents a disadvantage in treatment compliance. CLZ presents several side effects, such as headache, runny nose, and dizziness. This paper aimed to obtain novel polymeric nanocapsules prepared from poly(ε-caprolactone)-poly(ethylene glycol) (PCL-PEG) blend containing CLZ. Nanocapsules showed pH values between 6.1 and 6.3, average size lower than 137 nm, low polydispersity index (<0.22) and negative zeta potential. These nanoformulations demonstrated spherical shape with smooth surface. Results achieved by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) indicated drug amorphization compared to pure CLZ. Fourier-transformed infrared spectroscopy (FTIR) showed no chemical bonds between drug and polymers. Formulations presented suitable stability for physical parameters. The in vitro drug release demonstrated prolonged release with no burst effect. Drug release was controlled by both mechanisms of polymer relaxation/degradation and Fickian diffusion. Moreover, chosen CLZ-loaded nanocapsules provided an in vivo prolonged antiplatelet effect for CLZ statistically similar to aspirin. These formulations can be further used as a feasible oral drug delivery carrier for controlled release of CLZ in order to treat PAD and IC events.
Collapse
Affiliation(s)
- Mona Lisa Simionatto Gomes
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Núbia da Silva Nascimento
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Débora Maria Borsato
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ana Paula Pretes
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jessica Mendes Nadal
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Andressa Novatski
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Zanetti Gomes
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Daniel Fernandes
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Paulo Vitor Farago
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil; Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil.
| | - Sandra Maria Warumby Zanin
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
15
|
Sun H, Du J. Plasmonic vesicles with tailored collective properties. NANOSCALE 2018; 10:17354-17361. [PMID: 30198031 DOI: 10.1039/c8nr04820g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmonic nanoparticle assemblies have been exhibiting unique collective properties absent in their individual counterparts. However, it is an important challenge to manipulate those properties due to the difficulty in controlling the arrangement and distance between plasmonic nanoparticles. Herein, we propose an alternative strategy for manipulating the distance between gold nanoparticles on the plasmonic vesicles to afford tunable collective properties by changing the temperature. To reach this goal, a thermally responsive vesicle is self-assembled from an azobenzene-terminated homopolymer, poly(2-(2-ethoxyethoxy)ethyl acrylate) (Azo-PEEA). Gold nanoparticles are then decorated on its membrane to afford plasmonic vesicles, which can be grouped and fused into larger plasmonic vesicles when heated. Consequently, the gold nanoparticles come closer, creating local hot spots in the gap between adjacent gold nanoparticles, leading to the red shift of local surface plasmon resonance (LSPR) peaks and better surface-enhanced Raman scattering (SERS). Besides, the structure and the collective optical properties of the plasmonic vesicles can be reserved under various conditions, e.g., different pH values, high salt concentration and relatively high temperature once they are heated up to 35 °C.
Collapse
Affiliation(s)
- Hui Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | | |
Collapse
|
16
|
Sun H, Hong Y, Xi Y, Zou Y, Gao J, Du J. Synthesis, Self-Assembly, and Biomedical Applications of Antimicrobial Peptide-Polymer Conjugates. Biomacromolecules 2018. [PMID: 29539262 DOI: 10.1021/acs.biomac.8b00208] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides (AMPs) have been attracting much attention due to their excellent antimicrobial efficiency and low rate in driving antimicrobial resistance (AMR), which has been increasing globally to alarming levels. Conjugation of AMPs into functional polymers not only preserves excellent antimicrobial activities but reduces the toxicity and offers more functionalities, which brings new insight toward developing multifunctional biomedical materials such as hydrogels, polymer vesicles, polymer micelles, and so forth. These nanomaterials have been exhibiting excellent antimicrobial activity against a broad spectrum of bacteria including multidrug-resistant (MDR) ones, high selectivity, and low cytotoxicity, suggesting promising potentials in wound dressing, implant coating, antibiofilm, tissue engineering, and so forth. This Perspective seeks to highlight the state-of-the-art strategy for the synthesis, self-assembly, and biomedical applications of AMP-polymer conjugates and explore the promising directions for future research ranging from synthetic strategies, multistage and stimuli-responsive antibacterial activities, antifungi applications, and potentials in elimination of inflammation during medical treatment. It also will provide perspectives on how to stem the remaining challenges and unresolved problems in combating bacteria, including MDR ones.
Collapse
Affiliation(s)
- Hui Sun
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yuanxiu Hong
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yuejing Xi
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yijie Zou
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jingyi Gao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China.,Department of Orthopedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , China
| |
Collapse
|
17
|
Madsen J, Madden G, Themistou E, Warren NJ, Armes SP. pH-Responsive diblock copolymers with two different fluorescent labels for simultaneous monitoring of micellar self-assembly and degree of protonation. Polym Chem 2018. [DOI: 10.1039/c8py00111a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Facile labelling of both blocks of a pH-responsive diblock copolymer with different fluorophores allows monitoring of polymer aggregation and deprotonation.
Collapse
Affiliation(s)
- Jeppe Madsen
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- Danish Polymer Centre
| | | | - Efrosyni Themistou
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Nicholas J. Warren
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- School of Chemical and Process Engineering
| | | |
Collapse
|
18
|
Sun L, Gao F, Shen D, Liu Z, Yao Y, Lin S. Rationally designed hyperbranched azopolymer with temperature, photo and pH responsive behavior. Polym Chem 2018. [DOI: 10.1039/c8py00472b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hyperbranched azopolymer, HPAzoAMAM-star-EG3, was synthesized and it could self-assemble into uniform large compound micelles with multi-stimuli responsive behavior.
Collapse
Affiliation(s)
- Liuying Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Fei Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Dingfeng Shen
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Zhenghui Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|