1
|
Ji G, Li X, Zhang J. Anti-Markovnikov Hydroacylation of Aryl Alkenes with Aldehydes Enabled by Photo/Cobalt Dual Catalysis. Org Lett 2024. [PMID: 39731548 DOI: 10.1021/acs.orglett.4c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Herein we describe a dual photo/cobalt-catalyzed anti-Markovnikov hydroacylation of aryl alkenes using aldehyde as acyl source. The key to success is the cobalt catalyzed hydrogen atom transfer, which enables effective formation of the desired products and efficient regeneration of the photocatalyst under mild conditions. This protocol features broad substrate scopes, good functional group tolerance, high efficiency and regioselectivity.
Collapse
Affiliation(s)
- Guanghao Ji
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Xuan Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| | - Jing Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, People's Republic of China 430072
| |
Collapse
|
2
|
Hu AM, Tu JL, Wang K, Yin J, Guo L, Yang C, Xia W. Photoinduced Ligand-to-Copper Charge Transfer for Aryl Decarboxylative Allylation, Thiolation, and Bromination. Org Lett 2024; 26:8572-8576. [PMID: 39330937 DOI: 10.1021/acs.orglett.4c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Herein, aryl decarboxylative allylation, thiolation, and bromination reactions via photoinduced ligand-to-copper charge transfer are described. Utilizing inexpensive copper metal, the transformations of various aryl carboxylic acids enable the rapid synthesis of the corresponding alkene, thioether, and aryl bromide derivatives under visible light irradiation, which offers significant synthetic value. The reaction conditions are mild and straightforward, exhibiting a broad substrate compatibility. Furthermore, this method can be applied for the late-stage modification of complex drug molecules.
Collapse
Affiliation(s)
- Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Ke Wang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiawen Yin
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Lu S, Xiang Y, Chen J, Shu C. Recent Developments in Photoinduced Decarboxylative Acylation of α-Keto Acids. Molecules 2024; 29:3904. [PMID: 39202983 PMCID: PMC11357500 DOI: 10.3390/molecules29163904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Ketones are ubiquitous patterns found in various biological molecules and natural products. In recent years, a number of acylation methods have been developed based on the use of α-oxocarboxylic acids as acyl-transfer reagents, with particular emphasis on the photoinduced decarboxylative acylation of α-keto acids. This review focuses on the latest advancements in acylation methodologies through the decarboxylation of α-keto acids over the past several years, highlighting their product diversity, selectivity, and applicability. Where possible, the mechanistic rationale is presented, providing a positive outlook for the promising future of this field.
Collapse
Affiliation(s)
- Shuaiqi Lu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan 430079, China
| | - Yilong Xiang
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan 430079, China
| | - Jingfu Chen
- China National Standard Pharmaceutical Corporation Limited, Huangshi 435002, China
| | - Chao Shu
- State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, CCNU-uOttawa Joint Research Centre, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan 430079, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
4
|
Huang W, Wang C, Zhang Y, Qu J, Chen Y. Nickel-catalyzed acylation of vinylpyridine with alkylzincs under 1 atm CO. Org Biomol Chem 2024; 22:2380-2383. [PMID: 38436087 DOI: 10.1039/d4ob00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A nickel-catalyzed acylation of vinylpyridines with CO at atmospheric pressure is reported, allowing for an expedient approach to synthesize β-acyl pyridine derivatives with high regio- and chemoselectivity. The electron-withdrawing property of pyridine plays pivotal roles in activating the alkenyl group, thereby facilitating this carbonylative process. In addition to vinylpyridines, other alkenylheterocycles such as thiazole and quinoline were also suitable for this method.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yetong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P R China
| |
Collapse
|
5
|
Shi W, Yang C, Guo L, Xia W. Photo-induced decarboxylative hydroacylation of α-oxocarboxylic acids with terminal alkynes by radical addition–translocation–cyclization in water. Org Chem Front 2022. [DOI: 10.1039/d2qo01424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A photo-induced radical addition–translocation–cyclization (RATC) reaction of terminal alkynes and α-oxocarboxylic acids using water as the reaction medium is reported herein.
Collapse
Affiliation(s)
- Wei Shi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Wang Y, Zhang Z, Deng L, Lao T, Su Z, Yu Y, Cao H. Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials. Org Lett 2021; 23:7171-7176. [PMID: 34459619 DOI: 10.1021/acs.orglett.1c02575] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A simple and efficient mechanochemical-induced approach for the synthesis of 1,2-diketoindolizine derivatives has been developed. BaTiO3 was used as the piezoelectric material in this transformation. This method features no usage of solvent, simple experimental operation, scalable potential, and high conversion efficiency, which make it attractive and practical.
Collapse
Affiliation(s)
- Yumei Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
7
|
Chen Y, Wang J, Lu Y. Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes via copper/photoredox dual catalysis. Chem Sci 2021; 12:11316-11321. [PMID: 34667542 PMCID: PMC8447876 DOI: 10.1039/d1sc02896k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
We disclose herein the first example of merging photoredox catalysis and copper catalysis for radical 1,4-carbocyanations of 1,3-enynes. Alkyl N-hydroxyphthalimide esters are utilized as radical precursors, and the reported mild and redox-neutral protocol has broad substrate scope and remarkable functional group tolerance. This strategy allows for the synthesis of diverse multi-substituted allenes with high chemo- and regio-selectivities, also permitting late stage allenylation of natural products and drug molecules.
Collapse
Affiliation(s)
- Ya Chen
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Junjie Wang
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| | - Yixin Lu
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou Fujian 350207 China
| |
Collapse
|
8
|
Chen JY, Wu HY, Gui QW, Yan SS, Deng J, Lin YW, Cao Z, He WM. Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63750-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Wu Z, Hao S, Hu J, Shen H, Lai M, Liu P, Xi G, Wang P, Zhao S, Zhang X, Zhao M. Copper‐Catalyzed Decarboxylative Reductive Sulfonylation of α‐Oxocarboxylic Acids with Aryl Sulfonyl Hydrazines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiyong Wu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Shuai Hao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Jingyan Hu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Hongtao Shen
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Miao Lai
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Pengfei Liu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Gaolei Xi
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Pengfei Wang
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Shengchen Zhao
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Xiaoping Zhang
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
10
|
Porous polymeric ligand promoted copper-catalyzed C-N coupling of (hetero)aryl chlorides under visible-light irradiation. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9859-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Wang XX, Lu X, Li Y, Wang JW, Fu Y. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9838-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Zheng L, Xia PJ, Zhao QL, Qian YE, Jiang WN, Xiang HY, Yang H. Photocatalytic Hydroacylation of Alkenes by Directly Using Acyl Oximes. J Org Chem 2020; 85:11989-11996. [DOI: 10.1021/acs.joc.0c01818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | | | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
13
|
Wu YJ, Yao QJ, Chen HM, Liao G, Shi BF. Palladium-catalyzed ortho-C-H silylation of biaryl aldehydes using a transient directing group. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9694-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|