1
|
Simultaneous capture of ISG15 conjugating and deconjugating enzymes using a semi-synthetic ISG15-Dha probe. Sci China Chem 2023; 66:837-844. [PMID: 36684644 PMCID: PMC9840423 DOI: 10.1007/s11426-022-1455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 01/15/2023]
Abstract
ISG15 is a ubiquitin-like (Ubl) protein attached to substrate proteins by ISG15 conjugating enzymes whose dysregulation is implicated in a multitude of disease processes, but the probing of these enzymes remains to be accomplished. Here, we describe the development of a new activity-based probe ISG15-Dha (dehydroalanine) through protein semi-synthesis. In vitro cross-linking and cell lysate proteomic profiling experiments showed that this probe can sequentially capture ISG15 conjugating enzymes including E1 enzyme UBA7, E2 enzyme UBE2L6, E3 enzyme HERC5, the previously known ISG15 deconjugating enzyme (USP18), as well as some other enzymes (USP5 and USP14) which we additionally confirmed to impart deISGylation activity. Collectively, ISG15-Dha provides a new tool that can simultaneously capture ISG15 conjugating and deconjugating enzymes for biochemical or pharmacological studies. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s11426-022-1455-x and is accessible for authorized users.
Collapse
|
2
|
Xu G, Su H, Lu L, Liu X, Zhao L, Tang B, Ming Z. Structural insights into the catalytic mechanism and ubiquitin recognition of USP34. J Mol Biol 2022; 434:167634. [PMID: 35588869 DOI: 10.1016/j.jmb.2022.167634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Ubiquitination, an important posttranslational modification, participates in virtually all aspects of cellular functions and is reversed by deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 34 (USP34) plays an essential role in cancer, neurodegenerative diseases, and osteogenesis. Despite its functional importance, how USP34 recognizes ubiquitin and catalyzes deubiquitination remains structurally uncharacterized. Here, we report the crystal structures of the USP34 catalytic domain in free state and after binding with ubiquitin. In the free state, USP34 adopts an inactive conformation, which contains a misaligned catalytic histidine in the triad. Comparison of USP34 structures before and after ubiquitin binding reveals a structural basis for ubiquitin recognition and elucidates a mechanism by which the catalytic triad is realigned. Transition from an open inactive state to a relatively closed active state is coupled to a process by which the "fingertips" of USP34 intimately grip ubiquitin, and this has not been reported before. Our structural and biochemical analyses provide important insights into the catalytic mechanism and ubiquitin recognition of USP34.
Collapse
Affiliation(s)
- Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Huizhao Su
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China
| | - Xiaomeng Liu
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Liang Zhao
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Bo Tang
- Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
3
|
Cui T, Chen J, Zhao R, Guo Y, Tang J, Li Y, Li Y, Bierer D, Liu L. Use of a Removable Backbone Modification Strategy to Prevent Aspartimide Formation in the Synthesis of Asp Lactam Cyclic Peptides
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Cui
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Junyou Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Rui Zhao
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanyan Guo
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Jiahui Tang
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Yulei Li
- Tsinghua‐Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, 42096 Wuppertal Germany
| | - Lei Liu
- Tsinghua‐Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
4
|
Liang L, Chu G, Qu Q, Zuo C, Mao J, Zheng Q, Chen J, Meng X, Jing Y, Deng H, Li Y, Liu L. Chemical Synthesis of Activity‐Based E2‐Ubiquitin Probes for the Structural Analysis of E3 Ligase‐Catalyzed Transthiolation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lu‐Jun Liang
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Guo‐Chao Chu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jingnan Chen
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yangwode Jing
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
5
|
Liang LJ, Chu GC, Qu Q, Zuo C, Mao J, Zheng Q, Chen J, Meng X, Jing Y, Deng H, Li YM, Liu L. Chemical Synthesis of Activity-Based E2-Ubiquitin Probes for the Structural Analysis of E3 Ligase-Catalyzed Transthiolation. Angew Chem Int Ed Engl 2021; 60:17171-17177. [PMID: 34021957 DOI: 10.1002/anie.202105870] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Activity-based E2 conjugating enzyme (E2)-ubiquitin (Ub) probes have recently emerged as effective tools for studying the molecular mechanism of E3 ligase (E3)-catalyzed ubiquitination. However, the preparation of existing activity-based E2-Ub probes depends on recombination technology and bioconjugation chemistry, limiting their structural diversity. Herein we describe an expedient total chemical synthesis of an E2 enzyme variant through a hydrazide-based native chemical ligation, which enabled the construction of a structurally new activity-based E2-Ub probe to covalently capture the catalytic site of Cys-dependent E3s. Chemical cross-linking coupled with mass spectrometry (CXMS) demonstrated the utility of this new probe in structural analysis of the intermediates formed during Nedd4 and Parkin-mediated transthiolation. This study exemplifies the utility of chemical protein synthesis for the development of protein probes for biological studies.
Collapse
Affiliation(s)
- Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingnan Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yangwode Jing
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Zhu HY, Wu M, Yu FQ, Zhang YN, Xi TK, Chen K, Fang GM. Chemical synthesis of thioether-bonded bicyclic peptides using tert-butylthio and Trt-protected cysteines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Sui X, Wang Y, Du YX, Liang LJ, Zheng Q, Li YM, Liu L. Development and application of ubiquitin-based chemical probes. Chem Sci 2020; 11:12633-12646. [PMID: 34123237 PMCID: PMC8163311 DOI: 10.1039/d0sc03295f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein ubiquitination regulates almost every process in eukaryotic cells. The study of the many enzymes involved in the ubiquitination system and the development of ubiquitination-associated therapeutics are important areas of current research. Synthetic tools such as ubiquitin-based chemical probes have been making an increasing contribution to deciphering various biochemical components involved in ubiquitin conjugation, recruitment, signaling, and deconjugation. In the present minireview, we summarize the progress of ubiquitin-based chemical probes with an emphasis on their various structures and chemical synthesis. We discuss the utility of the ubiquitin-based chemical probes for discovering and profiling ubiquitin-dependent signaling systems, as well as the monitoring and visualization of ubiquitin-related enzymatic machinery. We also show how the probes can serve to elucidate the molecular mechanism of recognition and catalysis. Collectively, the development and application of ubiquitin-based chemical probes emphasizes the importance and utility of chemical protein synthesis in modern chemical biology. This article reviews the design, synthesis, and application of different classes of Ub-based chemical probes.![]()
Collapse
Affiliation(s)
- Xin Sui
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China .,Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu Wang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Yun-Xiang Du
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
8
|
|