1
|
Jiang QQ, Li YJ, Wu Q, Wang X, Wang YA, Zhang R, Luo QX, Liang RP, Qiu JD. Efficient Charge Transfer Driven Electrochemiluminescence in Heteroatom-Involved Cocrystal Engineering for Detection of Uranyl Ions. Anal Chem 2024; 96:19740-19749. [PMID: 39574243 DOI: 10.1021/acs.analchem.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Embracing strategies that circumvent the complexities and disordered structures of electrochemiluminescence (ECL) emitters to improve charge transfer efficiency is crucial for advancing ECL technology to the forefront. Here, heteroatom-involved cocrystal engineering was introduced, constructing an ECL system with controllability of the charge transfer process. Through the mutual recognition and coassembly between functional monomers, highly ordered cocrystal superstructures are formed. The layered donor-acceptor arrays in cocrystals accelerated charge transfer, producing a remarkable ECL performance. Furthermore, distinct heteroatoms possess the capability to modulate the charge distribution of monomers by either pushing or pulling electrons. This modulation ultimately affects the charge transfer pathways within cocrystals, enabling ECL emissions of varying intensities and wavelengths. Notably, the presence of UO22+ would significantly inhibit the charge transfer in cocrystals, causing a quenching of ECL signal. This unique characteristic enables precise and selective detection of UO22+. The heteroatom-involved cocrystals hold immense potential to construct next-generation ECL emitters and create fresh opportunities for the advancement of ECL technology.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ying-Ao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
2
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
3
|
Chen MM, Gao H, Ge ZB, Zhao FJ, Xu JJ, Wang P. Ultrasensitive Electrochemiluminescence Sensor Utilizing Aggregation-Induced Emission Active Probe for Accurate Arsenite Quantification in Rice Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2826-2833. [PMID: 38282384 DOI: 10.1021/acs.jafc.3c08389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Arsenic (As) constitutes a substantial threat to global ecosystems and public health. An accurate quantification of inorganic arsenite (As(III)) in rice grains is crucial for ensuring food safety and human well-being. Herein, we constructed an electrochemiluminescence (ECL) biosensor utilizing aggregation-induced emission (AIE) active Pdots for the sensitive detection of As(III) in rice. We synthesized tetraphenylethylene-based AIE-active Pdots, exhibiting stable and highly efficient ECL emission in their aggregated states. Owing to the overlap of spectra, we employed an electrochemiluminescence resonance energy transfer (ECL-RET) system, with the Pdots as the donor and black hole quencher (BHQ) as the acceptor. Upon the introduction of As(III), the conformational changes of As(III)-specific aptamer could trigger the detachment of BHQ-labeled DNA aptamer from the electrode surface, leading to the recovery of the ECL signal. The target-induced "signal-on" bioassay enabled the sensitive and specific detection of As(III) with a linear range of 10 pM to 500 nM, with an ultralow limit of detection (LOD) of 5.8 pM/0.4 ppt. These values significantly surpass those of existing sensors designed for As(III) quantification in rice. Furthermore, by employing amylase hydrolysis for efficient extraction, we successfully applied our sensor to measure As(III) in actual rice samples sourced from diverse regions of China. The results obtained using our sensor were in close agreement with those derived from the reference method of HPLC-ICP-MS. This study not only presents a sensitive and reliable method for detecting arsenite but also underscores its potential applications in enhancing food safety, agriculture practices, and environmental monitoring.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhan-Biao Ge
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
5
|
Li Q, Wang Z, Xu M, Li J, Li Y, Hua D. Visualized electrochemiluminescence iodine sensor based on polymer dots with Co-reactive group for real-time monitoring system. Talanta 2023; 257:124369. [PMID: 36801756 DOI: 10.1016/j.talanta.2023.124369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/05/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Trace iodine (I2) radioisotopes are commonly regarded as an indicator in nuclear security early warnings. Herein, we develop a visualized I2 real-time monitoring system using electrochemiluminescence (ECL) imaging technology for the first time. In detail, the polymers based on poly [(9,9-dioctylfluorene-alkenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1',3}-thiadiazole)] are synthesized for iodine detection. An ultra-low limit of detection (0.01 ppt) to iodine can be achieved by adding the modification ratio of tertiary amine onto PFBT as a co-reactive group, which is the lowest detection limit in known iodine vapor sensors. This result can be attributed to the co-reactive group poisoning response mechanism. Considering to the strong ECL behavior of this polymer dots, P-3 Pdots with ultra-low detection limit for iodine is combined with ECL imaging technology to realize the visualized rapid I2 vapor response with high selectivity. ECL imaging component based on ITO electrode can make iodine monitoring system more convenient and suitable for real-time detection in early warning of nuclear emergency. The detection result cannot be affected by vapor of organic compounds, humidity and temperature, indicating a good selectivity to iodine. This work provides a strategy for nuclear emergency early warning, showing its significance in environmental and nuclear security fields.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Junying Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Yulin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
6
|
Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
He S, Wang X, Xiang G, Lac K, Wang C, Ding Z. Enhanced Electrochemiluminescence of A Macrocyclic Tetradentate Chelate Pt(II) Molecule via Its Collisional Interactions with the Electrode. Chem Asian J 2022; 17:e202200727. [PMID: 35997551 DOI: 10.1002/asia.202200727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Indexed: 11/11/2022]
Abstract
A macrocyclic tetradentate chelate Pt(II) molecule (Pt1) served as an excellent luminophore in electrochemiluminescence (ECL) processes. The blue ECL of Pt1/S2O82- coreactant system in N,N'-dimethylformamide was found to be 46 times higher than that of the Ru(bpy)2+/S2O82- system or 30 times higher than that of the 9,10-diphenylanthracene/S2O82- system. The unprecedented high ECL quantum efficiencies were caused by the cyclic generation of monomer excited states through collisional interactions of Pt1 molecules with the electrode at an elevated frequency. The ECL is tunable from bright blue to pure white by simply changing the solvent from N,N'-dimethylformamide to dichloromethane. The white ECL of Pt(II) molecule was reported for the first time and the mechanism was proposed to be the simultaneous emissions from the monomer excited state (blue) and excimer (red).
Collapse
Affiliation(s)
- Shuijian He
- Nanjing Forestry University, College of Materials Science and Engineering, CHINA
| | | | | | - Kevin Lac
- Western University, Chemistry, CANADA
| | - Changshui Wang
- Nanjing Forestry University, College of Materials Science and Engineering, CHINA
| | - Zhifeng Ding
- University of Western Ontario, Chemistry, 1151 Richmond St, N6A5B7, London, CANADA
| |
Collapse
|
8
|
Wang Z, Gao H, Liu P, Wu X, Li Q, Xu JJ, Hua D. Visualized uranium rapid monitoring system based on self-enhanced electrochemiluminescence-imaging of amidoxime functionalized polymer nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Zhu Y, He J, Wang Q, Chen A, Aa J, Wang G. Accurate biodetection of trace uranium by electrochemiluminescence and its application inIn vivo toxicokinetic dynamic research. Biosens Bioelectron 2022; 215:114489. [DOI: 10.1016/j.bios.2022.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
10
|
Zhao W, Xu J. Chemical Measurement and Analysis: from Phenomenon to Essence. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
11
|
He B, Huang J, Zhang J, Liu X, Wang D, Sung HHY, Liu Y, Qin A, Lam JWY, Tang BZ. In-situ generation of poly(quinolizine)s via catalyst-free polyannulations of activated diyne and pyridines. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Multifunctional polyethyleneimine for synthesis of core-shell nanostructures and electrochemiluminescent detection of three AMI biomarkers. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Zha M, Yang G, Li Y, Zhang C, Li B, Li K. Recent Advances in AIEgen-Based Photodynamic Therapy and Immunotherapy. Adv Healthc Mater 2021; 10:e2101066. [PMID: 34519181 DOI: 10.1002/adhm.202101066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Cancer, one of the leading causes of death, has seriously threatened public health. However, there is still a lack of effective treatments. Nowadays, photodynamic therapy (PDT), relying on photosensitizers to trigger the generation of reactive oxygen species (ROS) for killing cancer cells, has been emerging as a noninvasive anti-cancer strategy. To enhance the overall anti-cancer efficacy of PDT, various approaches including molecular design and combination with other therapeutic techniques have been proposed and implemented. Especially, photodynamic immunotherapy that can effectively evoke the body's immune response has attracted much attention. Recently, a class of photosensitizers with aggregation-induced emission (AIE) character have shown unique promises, taking advantage of their profound fluorescence and ROS-generating ability in the aggregation state. Despite the promising results demonstrated by several groups, the associated studies are few and the mechanism of such AIEgen-based photodynamic immunotherapy has not been fully understood. This review discusses the recent advances in the AIEgen-based enhanced PDT with a special focus on the AIE photosensitizers for photodynamic immunotherapy, aiming to inspire more opportunities for in-depth investigation of the working principles in this emerging anti-cancer approach.
Collapse
Affiliation(s)
- Menglei Zha
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Guang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Yaxi Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Chen Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| | - Bo Li
- Department of Cardiology Shandong University Central Hospital of Zibo NO.10 South Shanghai Road Zibo 255000 China
| | - Kai Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) No. 1088 Xueyuan Rd. Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
14
|
Zhang B, Kong Y, Liu H, Chen B, Zhao B, Luo Y, Chen L, Zhang Y, Han D, Zhao Z, Tang BZ, Niu L. Aggregation-induced delayed fluorescence luminogens: the innovation of purely organic emitters for aqueous electrochemiluminescence. Chem Sci 2021; 12:13283-13291. [PMID: 34777746 PMCID: PMC8528032 DOI: 10.1039/d1sc02918e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/05/2021] [Indexed: 01/02/2023] Open
Abstract
Due to overcoming the limitation of aggregation caused quenching (ACQ) of solid-state emitters, aggregation-induced emission (AIE) organic luminogens have become a promising candidate in aqueous electrochemiluminescence (ECL). However, restricted by the physical nature of fluorescence, current organic AIE luminogen-based ECL (AIECL) faces the bottleneck of low ECL efficiency. Here, we propose to construct de novo aqueous ECL based on aggregation-induced delayed fluorescence (AIDF) luminogens, called AIDF-ECL. Compared with the previous organic AIE luminogens, purely organic AIDF luminogens integrate the superiorities of both AIE and the utilization of dark triplets via thermal-activated spin up-conversion properties, thereby possessing the capability of close-to-unity exciton utilization for ECL. The results show that the ECL characteristics using AIDF luminogens are directly related to their AIDF properties. Compared with an AIECL control sample based on a tetraphenylethylene AIE moiety, the ECL efficiency of our AIDF-ECL model system is improved by 5.4 times, confirming the excellent effectiveness of this innovative strategy.
Collapse
Affiliation(s)
- Baohua Zhang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| | - Yi Kong
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| | - Huijun Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| | - Bin Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| | - Bolin Zhao
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| | - Yelin Luo
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| | - Lijuan Chen
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| | - Yuwei Zhang
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| | - Dongxue Han
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology Guangzhou 510640 China .,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Li Niu
- Centre for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou Key Laboratory of Sensing Materials & Devices Guangzhou 510006 P. R. China
| |
Collapse
|
15
|
Li YJ, Cui WR, Jiang QQ, Liang RP, Li XJ, Wu Q, Luo QX, Liu J, Qiu JD. Arousing Electrochemiluminescence Out of Non-Electroluminescent Monomers within Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47921-47931. [PMID: 34601862 DOI: 10.1021/acsami.1c12958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) with stable long-range ordered arrangements are promising materials for organic optoelectronics. However, their electrochemiluminescence (ECL) from non-ECL active monomers has not been realized. Here, we report a design strategy for ECL-emitting COF family. The donors and acceptors co-crystallized and stacked into the highly aligned array of olefin-linked COFs, so that electrons can be transported freely. By this means, a tunable ECL is activated from non-ECL molecules with the maximum efficiency of 32.1% in water with the dissolved oxygen as an inner coreactant, and no additional noxious co-reactant is needed any more. Quantum chemistry calculations further demonstrate that this design reduces the COFs' band gaps and the overlap of electrons and holes in the excited state for better photoelectric properties and stronger ECL signals. This work exploits a basis to envisage the broad application potential of ECL-COFs for various biosensors and light-emitting display.
Collapse
Affiliation(s)
- Ya-Jie Li
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Xue-Jing Li
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiong Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
16
|
Yang L, Du Y, Fan D, Zhang Y, Kuang X, Sun X, Wei Q. Facile Encapsulation of Iridium(III) Complexes in Apoferritin Nanocages as Promising Electrochemiluminescence Nanodots for Immunoassays. Anal Chem 2021; 93:11329-11336. [PMID: 34342421 DOI: 10.1021/acs.analchem.1c02675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A class of water-soluble electrochemiluminescence (ECL) nanodots were prepared by encapsulating ECL-active iridium complexes into biocompatible horse spleen apoferritin (apoHSF) nanocages for immunoassays. The preparation feasibility was achieved based on the pH-induced disassembly/reassembly nature originated from apoHSF. Two iridium nanodots (1 and 2) with high ECL efficiency were separately prepared by directing the self-assembly of two water-insoluble luminescent complexes, Ir(ppy)3 (ppy = 2-phenylpyridine) and Ir(ppy)2(acac) (ppy = 2-phenylpyridine and acac = acetylacetonate), in the apoHSF cavity. Using tri-n-propylamine (TPrA) as a coreactant, the electrochemistry and "oxidative-reductive" ECL mechanisms for nanodots 1 and 2 were investigated, respectively. After demonstrating the spectroscopic property and relative ECL efficiency, the ECL emission of nanodots 1 and 2 quenched by TPrA• radicals at high potential was further studied and circumvented by optimizing the potential range and TPrA concentration for generating strong and stable ECL emission in aqueous media. The well-inherited biological functions of apoHSF in nanodots allow the convenient external modification of an antibody to act as a signal probe, thus a versatile ECL immunoassay paradigm was established. Acceptable results from this assay enabled the rapid and accurate detection of biomarkers in real samples. The unprecedented use of apoHSF is feasible and applicable for water-insoluble iridium complexes to fabricate a wide variety of biocompatible ECL nanodots for potential bioanalysis.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection of Shandong Province, University of Jinan, Jinan 250022, P. R. China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuan Kuang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.,Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection of Shandong Province, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
17
|
Zhang N, Gao H, Jia YL, Pan JB, Luo XL, Chen HY, Xu JJ. Ultrasensitive Nucleic Acid Assay Based on AIE-Active Polymer Dots with Excellent Electrochemiluminescence Stability. Anal Chem 2021; 93:6857-6864. [PMID: 33890762 DOI: 10.1021/acs.analchem.1c00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aggregation-induced emission (AIE) active Pdots are attractive nanomaterials applied in electrochemiluminescence (ECL) fields, while the irreversible redox reaction of these Pdots is a prevailing problem, resulting in instability of ECL emission. Herein, we first designed and synthesized an AIE-active Pdot with reversible redox property, which contains a tetraphenylethene derivate and benzothiadiazole (BT) to achieve stable ECL emission. BT has a good rigid structure with excellent electrochemical behaviors, which is beneficial for avoiding the destruction of the conjugated structure as much as possible during the preparation of Pdots, thus maintaining good redox property. The tetraphenylethene derivate, as a typical AIE-active moiety, provides a channel for highly efficient luminescence in the aggregated states. The Pdots exhibited reversible and quasi-reversible electrochemical behaviors during cathodic and anodic scanning, respectively. The stable annihilation, reductive-oxidative, and oxidative-reductive ECL signals were observed. Subsequently, we constructed an ultrasensitive ECL biosensor based on the oxidative-reductive ECL mode for the detection of miRNA-21 with a detection limit of 32 aM. This work provides some inspiration for the future design of ECL materials featuring AIE-active property and stable ECL emission.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Liang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Xu ZH, Gao H, Zhang N, Zhao W, Cheng YX, Xu JJ, Chen HY. Ultrasensitive Nucleic Acid Assay Based on Cyclometalated Iridium(III) Complex with High Electrochemiluminescence Efficiency. Anal Chem 2021; 93:1686-1692. [PMID: 33378161 DOI: 10.1021/acs.analchem.0c04284] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work developed a sensitive electrochemiluminescence (ECL) biosensor based on a cyclometalated iridium(III) complex ((bt)2Irbza), which was synthesized for the first time. Annihilation, reductive-oxidative, and oxidative-reductive ECL behaviors of (bt)2Irbza were investigated, respectively. The oxidative-reductive ECL intensity was the strongest compared with the other two, which showed 16.7 times relative ECL efficiency compared with commercial [Ru(bpy)3]2+ under the same experimental conditions. Therefore, an ECL biosensing system with (bt)2Irbza as the anodic luminophore was established for miRNA detection based on a closed bipolar electrode (BPE). Combined with both steric hindrance and catalytic effects induced by hemin/G-quadruplex in the cathodic reservoir of BPE that changed the Faraday current of the cathode and thus mediated the ECL intensity of (bt)2Irbza in the anode of BPE, the ECL sensor stated an ultrahigh sensitivity for microRNA (miRNA-122) analysis with a detection limit of 82 aM.
Collapse
Affiliation(s)
- Zhi-Hong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Xiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Gao H, Zhang N, Pan JB, Quan YW, Cheng YX, Chen HY, Xu JJ. Aggregation-Induced Electrochemiluminescence of Conjugated Pdots Containing a Trace Ir(III) Complex: Insights into Structure-Property Relationships. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54012-54019. [PMID: 33211963 DOI: 10.1021/acsami.0c18197] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An approach to the design of iridium(III)-contained polytetraphenylethene Pdots that could exhibit highly efficient electrochemiluminescence (ECL) was proposed. The relationships of ECL performance between the iridium complex-embedded and end-capped aggregation-induced emission (AIE) active Pdots in aqueous media were investigated for the first time. The iridium complexes with cyclometalated ligand 6-phenylphenanthridine (pphent) were incorporated into the copolymers by either embedding (P0, P2-P5) or end-capping (P1) into the backbone via an ancillary 2,2'-bipyridine (bpy) ligand. Subsequently, the corresponding Pdots of P0-P5 encapsulated with poly(styrene-co-maleicanhydride) could be obtained by the nanoprecipitation method. Compared to Pdots0, Pdots2-Pdots5 with (pphent)2Ir(bpy) (M1) complex embedding, as the iridium complex content increases, ECL signals were decreased in the order of Pdots0 > Pdots2 > Pdots3 > Pdots4 > Pdots5; whereas among these Pdots of P0-P5, Pdots1 with M1 complex end-capping exhibited the highest ECL efficiency (relative to a Ru(bpy)32+ system of 18.9%) and 4.7-fold enhancement of the ECL signal compared to the parent Pdots of P0, which was mainly attributed to the good film conductivity of the completely conjugated architectures, thus prompting the intramolecular electron transfer. This work opened new avenues for designing highly efficient ECL emitters.
Collapse
Affiliation(s)
- Hang Gao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Wu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Xiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Wang N, Gao H, Li Y, Li G, Chen W, Jin Z, Lei J, Wei Q, Ju H. Dual Intramolecular Electron Transfer for In Situ Coreactant‐Embedded Electrochemiluminescence Microimaging of Membrane Protein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276000 China
| | - Guangming Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qin Wei
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
21
|
Wang N, Gao H, Li Y, Li G, Chen W, Jin Z, Lei J, Wei Q, Ju H. Dual Intramolecular Electron Transfer for In Situ Coreactant‐Embedded Electrochemiluminescence Microimaging of Membrane Protein. Angew Chem Int Ed Engl 2020; 60:197-201. [DOI: 10.1002/anie.202011176] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yunzhi Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276000 China
| | - Guangming Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qin Wei
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
22
|
Guo J, Feng W, Du P, Zhang R, Liu J, Liu Y, Wang Z, Lu X. Aggregation-Induced Electrochemiluminescence of Tetraphenylbenzosilole Derivatives in an Aqueous Phase System for Ultrasensitive Detection of Hexavalent Chromium. Anal Chem 2020; 92:14838-14845. [DOI: 10.1021/acs.analchem.0c03709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Weiqiang Feng
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yu Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhiming Wang
- SCUT-HKUST Joint Research Institute, Guangzhou International Campus, Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| |
Collapse
|
23
|
Liu F, Liao Q, Wang J, Gong Y, Dang Q, Ling W, Han M, Li Q, Li Z. Intermolecular electronic coupling of 9-methyl-9H-dibenzo[a,[c] carbazole for strong emission in aggregated state by substituent effect. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9814-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Lv W, Yang Q, Li Q, Li H, Li F. Quaternary Ammonium Salt-Functionalized Tetraphenylethene Derivative Boosts Electrochemiluminescence for Highly Sensitive Aqueous-Phase Biosensing. Anal Chem 2020; 92:11747-11754. [DOI: 10.1021/acs.analchem.0c01796] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|