1
|
Wang W, Meng F, Bai Y, Lu Y, Yang Q, Feng J, Su Q, Ren H, Wu Q. Triazine-Carbazole-Based Covalent Organic Frameworks as Efficient Heterogeneous Photocatalysts for the Oxidation of N-aryltetrahydroisoquinolines. CHEMSUSCHEM 2024; 17:e202301916. [PMID: 38651217 DOI: 10.1002/cssc.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Covalent organic frameworks (COFs) have attracted growing interests as new material platform for a range of applications. In this study, a triazine-carbazole-based covalent organic framework (COF-TCZ) was designed as highly porous material with conjugated donor-acceptor networks, and feasibly synthesized by the Schiff condensation of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tr ianiline (TAPB) and 9-(4-formylphenyl)-9H-carbazole-3,6-dicarbaldehyde (CZTA) under the solvothermal condition. Considering the effect of linkage, the imine-linked COF-TCZ was further oxidized to obtain an amide-linked covalent organic framework (COF-TCZ-O). The as-synthesized COFs show high crystallinity, good thermal and chemical stability, and excellent photoactive properties. Two π-conjugated triazine-carbazole-based COFs with tunable linkages are beneficial for light-harvesting capacity and charge separation efficiency, which are empolyed as photocatalysts for the oxidation reaction of N-aryltetrahydroisoquinoline. The COFs catalyst systems exhibit the outstanding photocatalytic performance with high conversion, photostability and recyclability. Photoelectrochemical tests were employed to examine the behavior of photogenerated charge carriers in photo-illumination system. The control experiments provide further insights into the nature of photocatalysis. In addition, the current research also provided a valuable approach for developing photofunctional COFs to meet challenge in achieving the great potential of COFs materials in organic conversion.
Collapse
Affiliation(s)
- Wen Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fanyu Meng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yuhongxu Bai
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yongchao Lu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qingru Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jing Feng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qing Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiaolin Wu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Ma B, Lin X, Xuan D, Xu J, Jia Z, Lin C, Li Y, Zhai L. Lewis Acid Regulation Strategy for Constructing D-A-A Covalent Organic Frameworks with Enhanced Photocatalytic Organic Conversion. Chemistry 2024:e202402736. [PMID: 39143867 DOI: 10.1002/chem.202402736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Owing to their excellent photoelectric properties, donor-acceptor (D-A) type photocatalytic covalent organic frameworks (COFs) have attracted significant research interest in recent years. However, the limited D-A structural units of existing COFs restrict the development of novel and efficient photocatalytic COF materials. To solve this problem, we developed a series of D-A-A-type COFs utilizing a Lewis acid regulation strategy, in which Lewis acids act as the coordination centers, and pyridine and cyano groups act as ligands. Lewis acid sites in COFs serve as electron acceptors, facilitating the separation and transfer of photogenerated electron-hole pairs. This process is crucial for photocatalysis because it significantly increases the efficiency of the catalytic reaction by reducing the recombination rate of charge carriers. The developed Lewis acid-activated D-A-A COFs efficiently catalyzed the hydroxylation of various phenylboronic acid compounds under visible light. The developed catalysts are expected to contribute to increasing the fabrication efficiency of industrially important organic materials.
Collapse
Affiliation(s)
- Baiwei Ma
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xuanyu Lin
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Damin Xuan
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Jiayin Xu
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Zhan Jia
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Chunlei Lin
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Yuanyuan Li
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
3
|
Peng X, Tian Y, Yang T, Wang X, Song C, Kong A. Changing Benzoxazole Ring into Nonring Imine Linkages on Covalent Organic Frameworks with Tuning H 2O 2 Photosynthesis Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40180-40189. [PMID: 39016448 DOI: 10.1021/acsami.4c06179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Two π-conjugated covalent organic frameworks (COFs) with nonring imine or benzoxazole ring linkages were prepared by reacting 3,3'-dihydrooxybenzidine (BDOH) with 3,5-triformylbenzene (Tb) in the presence or absence of benzimidazole (BDOH-Tb-IM and BDOH-Tb-BO). Although two COFs indicated similar composition, crystalline structures, and morphologies, imine-based BDOH-Tb-IM exhibited a photocatalytic H2O2 production rate of 2490 μmol·g-1·h-1 in sacrificial reagent-free pure water, higher than that of benzoxazole-based BDOH-Tb-BO-a (1168 μmol·g-1·h-1). The higher photocatalytic activity of BDOH-Tb-IM was attributed to its more efficient photoinduced charge separation and utilization efficiency and different 2e- ORR active sites over the two COFs. This study demonstrated an available ring effect to adjust photocatalytic performance between π-conjugated COFs.
Collapse
Affiliation(s)
- Xueqing Peng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yue Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Tao Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xi Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chunmei Song
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Aiguo Kong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
4
|
Debruyne M, Van Der Voort P, Van Speybroeck V, Stevens CV. The Application of Porous Organic Polymers as Metal Free Photocatalysts in Organic Synthesis. Chemistry 2024; 30:e202400311. [PMID: 38499471 DOI: 10.1002/chem.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Concerns about increasing greenhouse gas emissions and their effect on our environment highlight the urgent need for new sustainable technologies. Visible light photocatalysis allows the clean and selective generation of reactive intermediates under mild conditions. The more widespread adoption of the current generation of photocatalysts, particularly those using precious metals, is hampered by drawbacks such as their cost, toxicity, difficult separation, and limited recyclability. This is driving the search for alternatives, such as porous organic polymers (POPs). This new class of materials is made entirely from organic building blocks, can possess high surface area and stability, and has a controllable composition and functionality. This review focuses on the application of POPs as photocatalysts in organic synthesis. For each reaction type, a representative material is discussed, with special attention to the mechanism of the reaction. Additionally, an overview is given, comparing POPs with other classes of photocatalysts, and critical conclusions and future perspectives are provided on this important field.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Veronique Van Speybroeck
- Department of Applied Physics, Ghent University, Technologiepark Gent, 46, 9052, Zwijnaarde, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
5
|
Wang H, Shi L, Qu Z, Zhang L, Wang X, Wang Y, Liu S, Ma H, Guo Z. Increasing Donor-Acceptor Interactions and Particle Dispersibility of Covalent Triazine Frameworks for Higher Crystallinity and Enhanced Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2296-2308. [PMID: 38189244 DOI: 10.1021/acsami.3c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent triazine frameworks (CTFs) have recently emerged as an efficient class of photocatalysts due to their structural diversity and excellent stability. Nevertheless, the synthetic reactions of CTFs have usually suffered from poor reversibility, resulting in a low crystallinity of the materials. Here, we report the introduction of methoxy groups on the monomer 2,5-diphenylthiazolo[5,4-d]thiazole to reinforce interlayer π-π interactions of the resulting donor-acceptor type CTFs, which improved crystallinity, further increasing the visible light absorption range and allowing for efficient separation and transport of carriers. The morphology is strongly correlated to the wettability, which has a significant impact on the mass transfer capacity and photocatalytic activity in the photocatalytic reaction. To further improve crystallinity and photocatalytic activity, CTF-NWU-T3 photocatalysts in a bowl shape were prepared using a SiO2 template. The energy band structure, photocatalytic hydrogen evolution, and pollutant degradation efficiency of involved materials were investigated. The donor-acceptor type CTF-NWU-T3 with a bowl-shaped morphology, synthesized using the template method and the introduction of methoxy groups, exhibited an excellent photocatalytic hydrogen production rate of 32064 μmol·h-1·g-1. This study highlights the significance of improving donor-acceptor interactions and increasing the dispersibility of catalyst particles in dispersion to enhance the photocatalytic activity of heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Lanting Shi
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
| | - Zhi Qu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Lingfeng Zhang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Xiao Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yefeng Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Shuai Liu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Haixia Ma
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Zhaoqi Guo
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| |
Collapse
|
6
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
7
|
Li X, Wang Y, Zhang F, Lang X. Benzothiadiazole covalent organic framework photocatalysis with an electron transfer mediator for selective aerobic sulfoxidation. J Colloid Interface Sci 2023; 648:683-692. [PMID: 37321087 DOI: 10.1016/j.jcis.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) are promising visible light photocatalysts for aerobic oxidation reactions. However, COFs usually suffer from the assault of reactive oxygen species, leading to hindered electron transfer. This scenario could be addressed by integrating a mediator to promote photocatalysis. Starting with 4,4'-(benzo-2,1,3-thiadiazole-4,7-diyl)dianiline (BTD) and 2,4,6-triformylphloroglucinol (Tp), TpBTD-COF is developed as a photocatalyst for aerobic sulfoxidation. Adding an electron transfer mediator 2,2,6,6-tetramethylpiperidine-1‑oxyl (TEMPO), the conversions are radically accelerated, over 2.5 times of that without TEMPO. Moreover, the robustness of TpBTD-COF is preserved by TEMPO. Remarkably, TpBTD-COF could endure multiple cycles of sulfoxidation, even with higher conversions than the fresh one. TpBTD-COF photocatalysis with TEMPO implements diverse aerobic sulfoxidation by an electron transfer pathway. This work highlights that benzothiadiazole COFs are an avenue for tailor-made photocatalytic transformations.
Collapse
Affiliation(s)
- Xia Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Qi W, Wu Q, Wang W, Feng J, Su Q. Fluorinated covalent organic framework materials for photocatalytically driven benzylamine coupling and azo dyes degradation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Liu S, Wang M, He Y, Cheng Q, Qian T, Yan C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of the Building Unit on Covalent Organic Frameworks in Mediating Photo‐induced Energy‐Transfer Reversible Complexation‐Mediated Radical Polymerization (PET‐RCMP). Angew Chem Int Ed Engl 2022; 61:e202208898. [DOI: 10.1002/anie.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Lu
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- College of Chemistry Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Yulai Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Longqiang Xiao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Linxi Hou
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| |
Collapse
|
12
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of Building Unit on the Covalent Organic Framework in Mediating Photo‐induced PET‐RCMP. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Lu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Rui Zhao
- Fuzhou University Qingyuan Innovation Laboratory CHINA
| | - Hongjie Yang
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Xiaoling Fu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Yulai Zhao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Longqiang Xiao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Linxi Hou
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering Xueyuan Road No. 2, Fuzhou 350116, China CHINA
| |
Collapse
|
13
|
Yao J, Lu Y, Sun H, Zhao X. Pore Engineering for Covalent Organic Framework Membranes. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Li G, Tian W, Zhong C, Yang Y, Lin Z. Construction of Donor-Acceptor Heteroporous Covalent Organic Frameworks as Photoregulated Oxidase-like Nanozymes for Sensing Signal Amplification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21750-21757. [PMID: 35482589 DOI: 10.1021/acsami.2c04391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials with enzyme-like characteristics (called nanozymes) show their extreme potentials as alternatives to natural enzymes. Covalent organic frameworks (COFs) as metal-free nanozymes have attracted huge attention for catalytic applications due to their flexible molecular design and synthetic strategies and conjugated, porous, and chemically stable architectures. Designing high-performance two-dimensional (2D) porous COF materials embedded with functional building units for modulating nanozymes' catalytic activity is of immense importance in contemporary research. The proper combination of donor-acceptor (D-A) fragments within a porous COF skeleton is an effective strategy to decrease the band gap and provide a strong charge-transfer pathway for highly effective charge separation. Herein, two donor-acceptor heteroporous COFs using an electron-deficient 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde (Tz) unit or 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzaldehyde (Td) unit and electron-rich tetrakis(4-aminophenyl)ethane (ETTA) linkers were presented. The resulting crystalline and heteroporous COFs showed outstanding oxidase-like activity under light irradiation, which can catalyze the oxidation of typical substrates and corresponding evolution in color and absorption. The light-activatable ETTA-Tz COF with prominent oxidase-like activity can serve as a colorimetric probe for quantitative detection of sulfide ions with a linear range of 1-50 μM and a detection limit of 0.27 μM within 3 min. The colorimetric approach could also be used for sulfide ion detection in human serum samples. The research demonstrated the future potential of D-A motifs within fully conjugated COFs to obtain excellent mimic enzyme activity.
Collapse
Affiliation(s)
- Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
15
|
Wang Y, Zhao Y, Li Z. Two-Dimensional Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromol Rapid Commun 2022; 43:e2200108. [PMID: 35477941 DOI: 10.1002/marc.202200108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Indexed: 11/07/2022]
Abstract
In the context of energy crisis and global warming, developing clean and sustainable energy is receiving increasing attention. Photocatalytic process including water splitting, CO2 reduction, coenzyme regeneration, etc., provides an ideal way to utilize renewable solar resources. The photocatalyst plays a central role in photocatalytic processes. Organic porous polymers have recently gained extensive attention in photocatalysis. Covalent organic frameworks (COFs), as one of the organic porous polymers, have the characteristics of high crystallinity, porosity and structural designability that make them perfect platforms for photocatalysis. In this minireview, the recent progresses of 2D COFs as photocatalysts were summarized including our recent work. The synthesis of the diversified structures of the COFs including the different linkages was first introduced. Then, the photocatalytic applications of the 2D COFs including photocatalytic hydrogen evolution, CO2 conversion, coenzyme regeneration and other traditional organic reaction were then discussed. Finally, conclusions and prospects were provided in the last section. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuancheng Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingjie Zhao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
16
|
|
17
|
Zhang Z, Jia J, Zhi Y, Ma S, Liu X. Porous organic polymers for light-driven organic transformations. Chem Soc Rev 2022; 51:2444-2490. [PMID: 35133352 DOI: 10.1039/d1cs00808k] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a new generation of porous materials, porous organic polymers (POPs), have recently emerged as a powerful platform of heterogeneous photocatalysis. POPs are constructed using extensive organic synthesis methodologies, with various functional organic units being connected via high-energy covalent bonds. This review systematically presents the recent advances in POPs for visible-light driven organic transformations. Herein, we firstly summarize the common construction strategies for POP-based photocatalysts based on two major approaches: pre-design and post-modification; secondly, we categorize and summarize the synthesis methods and organic reaction types for constructing various types of POPs. We then classify and introduce the specific reactions of current light-driven POP-mediated organic transformations. Finally, we outline the current state of development and the problems faced in light-driven organic transformations by POPs, and we present some perspectives to motivate the reader to explore solutions to these problems and confront the present challenges in the development process.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Ji Jia
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yongfeng Zhi
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China. .,Department of Materials Science & Engineering, National University of Singapore, Engineering Drive 1, Singapore 117575, Singapore
| | - Si Ma
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
18
|
Meng W, Li Y, Zhao Z, Song X, Lu F, Chen L. Ultrathin 2D Covalent Organic Framework Film Fabricated via Langmuir-Blodgett Method with a “Two-in-One” Type Monomer. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Gan S, Zeng Y, Lu C, Ma C, Wang F, Yang G, Zhang Y, Nie J. Rationally designed conjugated microporous polymers for efficient photocatalytic chemical transformations of isocyanides. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01393b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Click-based conjugated microporous polymers have been rationally designed and prepared for efficient N–H insertion like reaction of aryl isocyanides and photosynthesis of thiocarbamates.
Collapse
Affiliation(s)
- Shaolin Gan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yuexing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
20
|
Gan S, Zeng Y, Liu J, Nie J, Lu C, Ma C, Wang F, Yang G. Click-based conjugated microporous polymers as efficient heterogeneous photocatalysts for organic transformations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02076e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Click-based conjugated microporous polymers were found to be highly efficient photocatalysts for the Ugi reaction and α-oxidation of N-substituted tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Shaolin Gan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jiaxin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
21
|
Thiophene-Based Covalent Organic Frameworks: Synthesis, Photophysics and Light-Driven Applications. Molecules 2021; 26:molecules26247666. [PMID: 34946748 PMCID: PMC8704352 DOI: 10.3390/molecules26247666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Porous crystalline materials, such as covalent organic frameworks (COFs), have emerged as some of the most important materials over the last two decades due to their excellent physicochemical properties such as their large surface area and permanent, accessible porosity. On the other hand, thiophene derivatives are common versatile scaffolds in organic chemistry. Their outstanding electrical properties have boosted their use in different light-driven applications (photocatalysis, organic thin film transistors, photoelectrodes, organic photovoltaics, etc.), attracting much attention in the research community. Despite the great potential of both systems, porous COF materials based on thiophene monomers are scarce due to the inappropriate angle provided by the latter, which hinders its use as the building block of the former. To circumvent this drawback, researchers have engineered a number of thiophene derivatives that can form part of the COFs structure, while keeping their intrinsic properties. Hence, in the present minireview, we will disclose some of the most relevant thiophene-based COFs, highlighting their basic components (building units), spectroscopic properties and potential light-driven applications.
Collapse
|
22
|
Xie J, Chen M, Peng LL, Wu JQ, Zhou Q, Zhou CS, Xiong BQ, Liu Y. Facile preparation of Cu(II)-modified nitrogen-rich covalent organic polymer for cross-dehydrogenative ortho-aminomethylation of phenols. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
23
|
Li G, Ma W, Yang Y, Zhong C, Huang H, Ouyang D, He Y, Tian W, Lin J, Lin Z. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structures as Highly Efficient Light-Responsive Oxidase-like Mimics for Colorimetric Detection of Glutathione. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49482-49489. [PMID: 34636536 DOI: 10.1021/acsami.1c13997] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although organic artificial enzymes have been reported as biomimetic oxidation catalysts and are widely used for colorimetric biosensors, developing organic artificial enzymes with high enzymatic activity is still a challenge. Two-dimensional (2D) covalent organic frameworks (COFs) have shown superior potential in biocatalysts because of their periodic π-π arrays, tunable pore size and structure, large surface area, and thermal stability. The interconnection of electron acceptor and donor building blocks in the 2D conjugated COF skeleton can lead to narrower band gaps and efficient charge separation and transportation and thus is helpful to improve catalytic activity. Herein, a donor-acceptor 2D COF was synthesized using tetrakis(4-aminophenyl)pyrene (Py) as an electron donor and thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) as an electron acceptor. Under visible light irradiation, the donor-acceptor 2D COF exhibited superior enzymatic catalytic activity, which could catalyze the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) by the formation of superoxide radicals and holes. Based on the above property, the photoactivated donor-acceptor 2D COF with enzyme-like catalytic properties was designed as a robust colorimetric probe for cheap, highly sensitive, and rapid colorimetric detection of glutathione (GSH); the corresponding linear range of GSH was 0.4-60 μM, and the limit of detection was 0.225 μM. This study not only presents the construction of COF-based light-activated nanozymes for environmentally friendly colorimetric detection of GSH but also provides a smart strategy for improving nanozyme activity.
Collapse
Affiliation(s)
- Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wende Ma
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huan Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Dan Ouyang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital, Fuzhou 350003, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
24
|
Covalent-organic frameworks with keto-enol tautomerism for efficient photocatalytic oxidative coupling of amines to imines under visible light. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1088-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Wang Y, Zhang Z, Deng L, Lao T, Su Z, Yu Y, Cao H. Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials. Org Lett 2021; 23:7171-7176. [PMID: 34459619 DOI: 10.1021/acs.orglett.1c02575] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A simple and efficient mechanochemical-induced approach for the synthesis of 1,2-diketoindolizine derivatives has been developed. BaTiO3 was used as the piezoelectric material in this transformation. This method features no usage of solvent, simple experimental operation, scalable potential, and high conversion efficiency, which make it attractive and practical.
Collapse
Affiliation(s)
- Yumei Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
26
|
Wu B, Jiang X, Liu Y, Li QY, Zhao X, Wang XJ. Vinylene-bridged donor–acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light. RSC Adv 2021; 11:33653-33660. [PMID: 35497515 PMCID: PMC9042297 DOI: 10.1039/d1ra06118f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Two vinylene-bridged D–A structural POPs are constructed by the electron-rich triarylamine and electron-deficient tricyanomesitylene, which exhibited highly effective photocatalytic activities for aerobic oxidative coupling of amines to imine.
Collapse
Affiliation(s)
- Bang Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xinyue Jiang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qiu-Yan Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|