1
|
Chen Y, Lv G, Zou X, Su S, Wang J, Zhou C, Shen J, Shen Y, Liu Z. High-electrophilic (SiO) 2Nb(OH)(=O) sites confined in silanol defects over Nb-Beta zeolite for efficient cyclic alkene epoxidation reactions. J Colloid Interface Sci 2024; 664:626-639. [PMID: 38490038 DOI: 10.1016/j.jcis.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Dealuminated Beta zeolite has a large amount of silanol defects on its interface, which provides an ideal place for embedding metal species and creating metal active sites in a confined microenvironment. The confined metal sites as well as their surroundings are closely related to the reactant activation and transient state achievement. Hence, unraveling the confined metal sites is of great significance for the catalytic reaction process. Herein, niobium species were incorporated into the silanol defects over dealuminated Beta zeolite with a facile dry impregnation method, co-grinding the niobium precursor with dealuminated Beta zeolite support. The successful incorporation of niobium into the silanol defects for 30Nb-Beta zeolite was verified by DRIFT, 1H MAS NMR, UV-Vis and UV-Raman characterizations. XAS characterization and DFT calculations further disclosed that the confined Nb species existed as (SiO)2Nb(OH)(=O), containing two Si-O-Nb bonds, one Nb=O bond as well as one Nb-OH bond. The synthesized 30Nb-Beta zeolite catalyst displayed a superior cyclohexene conversion of 51.1%, cyclohexene oxide selectivity of 83.1% as well as TOF value of 188.2 h-1 ascribed to the inherent electrophilicity of Nb(V) for confined (SiO)2Nb(OH)(=O) species as well as the low oxygen transfer energy barrier for NbV-OOH species. Furthermore, the prepared 30Nb-Beta zeolite can be effectively employed to other cyclic alkene epoxidation reactions.
Collapse
Affiliation(s)
- Yan Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xuyang Zou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Shihao Su
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jiangzhang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Chaoyi Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jialing Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yangbin Shen
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Zhongmin Liu
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
2
|
Ye J, Tang X, Cheng L, Zhang S, Zhan W, Guo Y, Wang L, Cao XM, Wang KW, Dai S, Guo Y. Solvent-Free Synthesis Enables Encapsulation of Subnanometric FeO x Clusters in Pure Siliceous Zeolites for Efficient Catalytic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693896 DOI: 10.1021/acsami.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metal/metal oxide clusters possess a higher count of unsaturated coordination sites than nanoparticles, providing multiatomic sites that single atoms do not. Encapsulating metal/metal oxide clusters within zeolites is a promising approach for synthesizing and stabilizing these clusters. The unique feature endows the metal clusters with an exceptional catalytic performance in a broad range of catalytic reactions. However, the encapsulation of stable FeOx clusters in zeolite is still challenging, which limits the application of zeolite-encapsulated FeOx clusters in catalysis. Herein, we design a modified solvent-free method to encapsulate FeOx clusters in pure siliceous MFI zeolites (Fe@MFI). It is revealed that the 0.3-0.4 nm subnanometric FeOx clusters are stably encapsulated in the 5/6-membered rings intersectional voids of the pure siliceous MFI zeolites. The encapsulated Fe@MFI catalyst with a Fe loading of 1.4 wt % demonstrates remarkable catalytic activity and recycle stability in the direct oxidation of methane, while also promoting the direct oxidation of cyclohexane, surpassing the performance of conventional zeolite-supported Fe catalysts.
Collapse
Affiliation(s)
- Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lu Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shoujie Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Ming Cao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Azizi M, Abdulrahman YJ, Abdessamad NH, Azzaz AA, Naguib DM. Valorization and characterization of bio-oil from Salvadora persica seed for air pollutant adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53397-53410. [PMID: 36854946 DOI: 10.1007/s11356-023-25566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Salvadora persica (SP) is an important medicinal plant. Numerous articles have been conducted on the leaf, the roots, and the stem of the plant, but there is little information about the seed. Thus, the present work tries to identify the chemical composition of SP seed bio-oil and investigates its use as an adsorbent for cyclohexane removal. This study extracted bio-oil from seeds using different polar and non-polar organic solvents. Two techniques have been used to determine the chemical composition of the bio-oil extracted: FTIR and GC-MS. Results show that the extracted bio-oil presented 13 new major organic bio-compounds in n-hexane and ethanol SP seed extracts. Moreover, the analytical results showed that the two extracts are complex and contained thiocyanic acid, benzene, 3-pyridine carboxaldehyde, benzyl nitrile, ethyl tridecanoate, ethyl oleate, and dodecanoic acid ethyl ester. Additionally, each technique of analysis showed that the extracted bio-oils from SP seeds are rich in non-polar compounds. Indeed, the major fatty acids obtained are pentadecylic acid, myristic acid, lauric acid, oleic acid, margaric acid, and tricosanoic acid. This work provides guidelines for identifying these compounds, among others, and offers a platform for using SP seeds as a herbal alternative for various chemical, industrial, and medical applications. Furthermore, the capacity of SP extracts for air pollution treatment, namely, the removal of cyclohexane in batch mode, was investigated. Results showed that cyclohexane adsorption could be a chemical process involving both monolayer and multilayer adsorption mechanisms. The pores and the grooves on the surface of the SP bio-oil extract helped in adsorbing the cyclohexane with an outstanding maximum removal capacity of about 674.23 mg/g and 735.75 mg/g, respectively, for the ethanol and hexane SP extracts, which is superior to many other recent adsorbents.
Collapse
Affiliation(s)
- Mohamed Azizi
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia.
- Laboratory Desalination and Water Treatment Valorisation (LaDVEN), Water Research and Technologies Center (WRTC), BP 273, 8020, Soliman, Tunisia.
| | - Yousif Jumaa Abdulrahman
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- College of Science Elobied, University of Kordofan, El Obeid, Sudan
| | - NourEl-Houda Abdessamad
- Department of Chemistry, College of Science and Arts, Al-Baha University (College), Qilwah, Saudi Arabia
- Laboratory of Wastewater and Environment, Center for Water Research and Technologies (CWRT), BP 273-8020, Soliman, Tunisia
| | - Ahmed Amine Azzaz
- Environnements Dynamiques Et Territoires de La Montagne, Université Savoie Mont-Blanc, EDYTEM, Boulevard de La Mer Caspienne, 73370, Le Bourget-du-Lac, France
| | - Deyala M Naguib
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Biology Department, Faculty of Science and Arts in Qilwah, Albaha University (BU), Qilwah, Saudi Arabia
| |
Collapse
|
4
|
Zhang X, Wang X, Zhu R, Tan Q, Li C, Sun Z. Morphology regulation of zero-valent iron nanosheets supported on microsilica for promoting peroxymonosulfate activation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116894. [PMID: 36527804 DOI: 10.1016/j.jenvman.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Combing the assisted dispersion strategy of support with the wet chemical reduction method, a novel nano-zero valent iron/microsilica (nZVI/M) composite was successfully fabricated, where the 2D nZVI nanosheets were uniformly anchored and covered on the surface of microsilica. The introduction of microsilica notably relieved the agglomeration effect of nZVI nanosheets, which induced the improvement of specific surface area (45.68 m2/g) and pore volume (0.172 cm3/g), and thereby exposing more active sites for bisphenol A (BPA) removal. The optimized nZVI/M-0.6 displayed the superior catalytic performance in the presence of peroxymonosulfate (PMS) with the degradation rate of BPA reached above 97% within 3 min and a higher constant rate of 0.659 min-1, which was approximately 3.9 times as high as that of nZVI/PMS system. The homogeneously dispersion of nZVI nanosheets on microsilica benefited for the assembly of the pollutants and boosting the kinetics of the catalytic degradation process. As a highly efficient PMS activator, it could well maintain the catalytic activity in different real water samples. The quenching experiments verified that SO4•- played the dominate role for BPA removal. This work offered novel insights for designing and preparing iron-based persulfate activator for wastewater treatment.
Collapse
Affiliation(s)
- Xiangwei Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xinlin Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Rui Zhu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Qi Tan
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, China; National Engineering Research Center for Multipurpose Utilization of Nonmetallic Mineral Resources, Zhengzhou, 450006, China
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
5
|
Liu H, Li H, Lu B, Li S, Zhao J, Cai Q. Multicomponent Co-Zr-P-W-O immobilized zeolites toward solvent-free oxidation of toluene to benzaldehyde. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Bhuyan D, Kalita SJ, Saikia L. Mesoporous SBA-15 supported gold nanoparticles for solvent-free oxidation of cyclohexane: superior catalytic activity with higher cyclohexanone selectivity. Phys Chem Chem Phys 2022; 24:29781-29790. [PMID: 36459128 DOI: 10.1039/d2cp04198g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Surface modification of mesoporous SBA-15 with (3-mercaptopropyl) trimethoxysilane greatly enhances its capability to adsorb the tetrachloroauric anion (AuCl4-). The calcination of the sample after the adsorption experiment led to the generation of homogeneously dispersed, spherical, single crystalline gold nanoparticles (Au0 NPs) of less than 5 nm size, embedded on SBA-15 as observed from the TEM images. The as-prepared SBA-15/Au0 nanohybrid material has offered excellent catalytic activity for the selective oxidation of cyclohexane using TBHP as the oxidant in the absence of any solvent. A maximum of 48.7% cyclohexane conversion was achieved and surprisingly, cyclohexanone (K) has much higher selectivity (>95%) than cyclohexanol (A). The hot-filtration study confirmed the leach-resistant characteristics as well as the true heterogeneous catalytic activity of the SBA-15/Au0 nanohybrid catalyst. The catalyst was recycled up to four times without significant loss in its catalytic activity.
Collapse
Affiliation(s)
- Diganta Bhuyan
- Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
| | - Sanmilan Jyoti Kalita
- Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
| | - Lakshi Saikia
- Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research, CSIR-HRDC, Ghazaiabad, UP, India
| |
Collapse
|
7
|
Wang Z, Zhang B, Yang S, Yang X, Meng F, Zhai L, Li Z, Zhao S, Zhang G, Qin Y. Dual Pd2+ and Pd0 sites on CeO2 for benzyl alcohol selective oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Precise control of Pt encapsulation in zeolite-based catalysts for a stable low-temperature CO oxidation reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
|
10
|
Gao M, Yang P, Zhang X, Zhang Y, Li D, Feng J. Semi-quantitative design of synergetic surficial/interfacial sites for the semi-continuous oxidation of glycerol. FUNDAMENTAL RESEARCH 2022; 2:412-421. [PMID: 38933400 PMCID: PMC11197512 DOI: 10.1016/j.fmre.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Qualitatively identifying the dominant catalytic site for each step of a semi-continuous reaction and semi-quantitatively correlating such different sites to the catalytic performance is of great significance toward the integration of multiple well-optimized sites on a heterogeneous catalyst. Herein, a series of structurally defined TiOx-based catalysts were synthesized to provide a feasible approach to investigate the aforementioned issues using the semi-continuous oxidation of glycerol as a model reaction. Detailed investigations have verified the simultaneous presence of two kinds of Pt active sites: 1) Negatively charged Pt bound to the oxygen vacancies of modified TiOx in the form of Ptδ--Ov-Ti3+ sites and 2) metallic Pt (Pt0 site) located away from the interface. Meanwhile, the proportion of surficial and interfacial sites varies over this series of catalysts. Combined in situ FTIR experiments revealed that the reaction network was well-tuned via a site cooperation mechanism: The surficial Pt0 sites dissociatively adsorb the OH group of glycerol with a monodentate bonding geometry and the Ptδ--Ov-Ti3+ sites dissociate the C=O bond of the aldehyde group in a bidentate form. Furthermore, CO-FTIR spectroscopy confirmed a correlation between the reaction rate/product selectivity and the fraction of surficial/interfacial sites. A rational proportion of surficial and interfacial sites is key to enabling a high yield of glyceric acid. The most active catalyst with 32% surface sites and 68% interfacial sites exhibited 90.0% glycerol conversion and 68.5% GLYA selectivity. These findings provide a deeper understanding of the structure-activity relationships using qualitative identification and semi-quantitative analysis.
Collapse
Affiliation(s)
- Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yani Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
11
|
Mongkolpichayarak I, Jiraroj D, Anutrasakda W, Ngamcharussrivichai C, Samec JS, Tungasmita DN. Cr/MCM-22 catalyst for the synthesis of levulinic acid from green hydrothermolysis of renewable biomass resources. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Preface: Special topic on Precise Catalysis Science and Technology. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|