1
|
Hou J, Hu J, Wu J, Zhang Q, Liu Z, Dong L, Jiang G, Liu Y, Gao W, Fang Y. Continuous-flow synthesis of CsPbI 3/TiO 2 nanocomposites with enhanced water and thermal stability. Dalton Trans 2024. [PMID: 39051938 DOI: 10.1039/d4dt01763c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The inherent poor stability of CsPbI3 nanocrystals hinders the practical application of this material. Therefore, it is still a challenge to improve the stability of CsPbI3 nanocrystals and realize their large-scale continuous preparation. In this work, we report the preparation of CsPbI3/TiO2 nanocomposites with high stability by a microfluidic method. After the combination of CsPbI3 nanorods with TiO2, the PL intensity increased by 1.3 times under excitation at 577 nm due to the passivating effect of TiO2 on the surface of CsPbI3 nanorods and its carrier transport characteristics. Meanwhile, due to the coating of TiO2, the surface exposure area of CsPbI3 nanorods is reduced, which blocks external environmental effects to some extent and effectively improves the stability of CsPbI3 nanorods. Finally, an LED with a color gamut of 142% NTSC and a color temperature (CCT) of 3952 K was obtained by combining CsPbI1.5Br1.5/TiO2 and CsPbBr3/TiO2 nanocomposites with a blue light chip (455 nm). This study shows that the continuous and controllable synthesis of all inorganic halide perovskite nanocrystals by a microfluidic method is of great significance in the fabrication of high-performance optoelectronic materials and display devices.
Collapse
Affiliation(s)
- Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Jiafeng Hu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Jianghua Wu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Qing Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Zhifu Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Langping Dong
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Guangxiang Jiang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Wei Gao
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
2
|
Guo J, Yu Y, Shen Y, Sun X, Bi Y, Zhao Y. Multiple Bio-Actives Loaded Gellan Gum Microfibers from Microfluidics for Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303887. [PMID: 37392054 DOI: 10.1002/smll.202303887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Wound healing, known as a fundamental healthcare issue worldwide, has been attracting great attention from researchers. Here, novel bioactive gellan gum microfibers loaded with antibacterial peptides (ABPs) and vascular endothelial growth factor (VEGF) are proposed for wound healing by using microfluidic spinning. Benefitting from the high controllability of microfluidics, bioactive microfibers with uniform morphologies are obtained. The loaded ABPs are demonstrated to effectively act on bacteria at the wound site, reducing the risk of bacterial infection. Besides, sustained release of VEGF from microfibers helps to accelerate angiogenesis and further promote wound healing. The practical value of woven bioactive microfibers is demonstrated via animal experiments, where the wound healing process is greatly facilitated because of the excellent circulation of air and nutritious substances. Featured with the above properties, it is believed that the novel bioactive gellan gum microfibers would have a remarkable effect in the field of biomedical application, especially in promoting wound healing.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Endocrinology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, P. R. China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yunru Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yingbo Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100853, P. R. China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | - Yuanjin Zhao
- Department of Endocrinology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, P. R. China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
3
|
Shang Y, Liu R, Gan J, Yang Y, Sun L. Construction of cardiac fibrosis for biomedical research. SMART MEDICINE 2023; 2:e20230020. [PMID: 39188350 PMCID: PMC11235890 DOI: 10.1002/smmd.20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2023] [Indexed: 08/28/2024]
Abstract
Cardiac remodeling is critical for effective tissue recuperation, nevertheless, excessive formation and deposition of extracellular matrix components can result in the onset of cardiac fibrosis. Despite the emergence of novel therapies, there are still no lifelong therapeutic solutions for this issue. Understanding the detrimental cardiac remodeling may aid in the development of innovative treatment strategies to prevent or reverse fibrotic alterations in the heart. Further combining the latest understanding of disease pathogenesis with cardiac tissue engineering has provided the conversion of basic laboratory studies into the therapy of cardiac fibrosis patients as an increasingly viable prospect. This review presents the current main mechanisms and the potential tissue engineering of cardiac fibrosis. Approaches using biomedical materials-based cardiac constructions are reviewed to consider key issues for simulating in vitro cardiac fibrosis, outlining a future perspective for preclinical applications.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yuzhi Yang
- Department of Medical Supplies SupportNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
4
|
Zou S, Zhao X, Ouyang W, Xu S. Microfluidic Synthesis, Doping Strategy, and Optoelectronic Applications of Nanostructured Halide Perovskite Materials. MICROMACHINES 2022; 13:1647. [PMID: 36296000 PMCID: PMC9610495 DOI: 10.3390/mi13101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Halide perovskites are increasingly exploited as semiconducting materials in diverse optoelectronic applications, including light emitters, photodetectors, and solar cells. The halide perovskite can be easily processed in solution, making microfluidic synthesis possible. This review introduces perovskite nanostructures based on micron fluidic channels in chemical reactions. We also briefly discuss and summarize several advantages of microfluidics, recent progress of doping strategies, and optoelectronic applications of light-sensitive nanostructured perovskite materials. The perspective of microfluidic synthesis of halide perovskite on optoelectronic applications and possible challenges are presented.
Collapse
Affiliation(s)
- Shuangyang Zou
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoan Zhao
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Wenze Ouyang
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shenghua Xu
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|
5
|
Tang X, Yang F. Kinetic analysis of the growth behavior of perovskite CsPbBr 3 nanocrystals in a microfluidic system. LAB ON A CHIP 2022; 22:2832-2843. [PMID: 35819027 DOI: 10.1039/d2lc00331g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the growth behavior of nanoparticles and semiconductor nanocrystals under dynamic environments is of profound importance in controlling the sizes and uniformity of the prepared nanoparticles and semiconductor nanocrystals. In this work, we develop a relation between the bandgap (the photoluminescence peak wavelength) of semiconductor nanocrystals and the total flow rate for the synthesis of semiconductor nanocrystals in microfluidic systems under the framework of the quantum confinement effect without the contribution of Coulomb interaction. Using this relation, we analyze the growth behavior of CsPbBr3 nanocrystals synthesized in a microfluidic system by an antisolvent method in the temperature range of 303 to 363 K. The results demonstrate that the square of the average size of the CsPbBr3 nanocrystals is inversely proportional to the total flow rate and support the developed relation. The activation energy for the rate process controlling the growth of the CsPbBr3 nanocrystals in the microfluidic system is 2.05 kJ mol-1. Increasing the synthesis temperature widens the size distribution of the CsPbBr3 NCs prepared in the microfluidic system. The method developed in this work provides a simple approach to use photoluminescent characteristics to in situ monitor and analyze the growth of semiconductor nanocrystals under dynamic environments.
Collapse
Affiliation(s)
- Xiaobing Tang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
6
|
Bian F, Sun L, Chen H, Wang Y, Wang L, Shang L, Zhao Y. Bioinspired Perovskite Nanocrystals-Integrated Photonic Crystal Microsphere Arrays for Information Security. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105278. [PMID: 35048564 PMCID: PMC8948562 DOI: 10.1002/advs.202105278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/19/2023]
Abstract
Information security occupies an important position in the era of big data. Attempts to improve the security performance tend to impart them with more additional encryption strategies. Herein, inspired by the wettability feature of Stenocara beetle elytra and signal model of traffic light, a novel array of perovskite nanocrystals (PNs)-integrated PhC microsphere for information security is presented. The photoluminescent PNs are encapsulated in angle-independent PhC microspheres to impart them with binary optical signals as coding information. Through the multimask superposition approach, PNs-integrated PhC microspheres with different codes are placed into fluorosilane-treated PDMS substrate to form different arrays. These arrays could converge moisture on PhC microspheres in wet environment, which avoids the ions loss of the PNs and effectively prevented mutual contamination. In addition, the fluorescence of the PNs inside PhC microspheres could reversibly quench or recover in response to the environmental moisture. Based on these features, it is demonstrated that the PNs-integrated PhC microsphere arrays could realize various information encryption modes, which indicate their excellent values in information security fields.
Collapse
Affiliation(s)
- Feika Bian
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Lingyu Sun
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Hanxu Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Li Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and TechnologyInstitutes of Biomedical Sciences)Fudan UniversityShanghai200433China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|