1
|
Gao Y, Fan X, Zhang X, Guan Q, Xing Y, Song W, Song D. Rapid Recognition and Monitoring of Multiple Core Biomarkers with Point-of-Care Importance through Combinatorial DNA Logic Operation. Anal Chem 2025; 97:2402-2410. [PMID: 39837806 DOI: 10.1021/acs.analchem.4c05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge. Herein, a combinatorial DNA logic operation-guided multiplex PEC sensor is constructed to facilely distinguish and simultaneously monitor two core biomarkers that are essential for identifying asymptomatic Alzheimer patients and predicting the progression of the disease. The aptamers of amyloid-β oligomers (AβO) and Tau441 protein are simply integrated at the high-performance In-TBAPy photocathode. In the presence of AβO and Tau441 protein, the aptamer-target affinity complexes are formed and subsequently detached from the electrode surface, resulting in an increase of photocurrent. Through programming concatenated DNA molecular circuits, a 2-target input OR logic gate not only simplifies the manufacturing process of the multiplex PEC sensor but also realizes rapid and intelligent multiple-target recognition. As a conceptual prototype for the development of more sophisticated and complicated logic devices, the proposed DNA molecular logic system may open a new horizon for rapid disease diagnosis and POC analysis.
Collapse
Affiliation(s)
- Yao Gao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
| | - Xue Fan
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Qinglin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yongheng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Wenbo Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Hou J, Wang J, Han J, Wang J, Chao D, Dong Q, Fan D, Dong S. An intelligent ratiometric fluorescent assay based on MOF nanozyme-mediated tandem catalysis that guided by contrary logic circuit for highly sensitive sarcosine detection and smartphone-based portable sensing application. Biosens Bioelectron 2024; 249:116035. [PMID: 38244294 DOI: 10.1016/j.bios.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As the well-known test-indicator for early prostate cancer (PCa), sarcosine (SA) is closely related to the differential pathological process, which makes its accurate determination increasingly significant. Herein, we for the first time expanded the peroxidase (POD)-like property of facile-synthesized Zn-TCPP(Fe) MOF to fluorescent substrates and exploited it to ratiometric fluorescent (RF) sensing. By harnessing the effective catalytic oxidation of MOF nanozyme toward two fluorescent substrates (Scopoletin, SC; Amplex Red, AR) with contrary changes, and target-responsive (SA + SOx)/MOF/(SC + AR) tandem catalytic reaction, we constructed the first MOF nanozyme-based RF sensor for the quantitative determination of SA. Superior to previous works, the operation of this RF sensor is under the guidance of AND-(AND^NAND) contrary logic circuit. The dual-channel binary output changes (from 1/0 to 0/1) not only enable the intelligent logical recognition of SA, bringing strengthened reliability and accuracy, but also manifest the proof-of-concept discrimination of PCa individuals and healthy ones. Through recording the fluorescence alterations of SC (F465) and AR (F585), two segments of linear relationships between ratiometric values (F585/F465) and varied contents of SA are realized successfully. The LOD for SA could reach to as low as 39.98 nM, which outperforms all nanozyme-originated SA sensors reported till now. Moreover, this sensor also demonstrates high selectivity and satisfactory performance in human serum samples. Furthermore, the portable sensing of SA is realized under the assistance of smartphone-based RGB analysis, demonstrating the potential of point-of-care diagnostics of PCa in the future.
Collapse
Affiliation(s)
- Jingyu Hou
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jun Wang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Daiyong Chao
- Shandong Second Medical University, Weifang, 261053, China
| | - Qing Dong
- Shandong Second Medical University, Weifang, 261053, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
3
|
Domínguez A, Gargallo R, Cuestas-Ayllón C, Grazu V, Fàbrega C, Valiuska S, Noé V, Ciudad CJ, Calderon EJ, de la Fuente JM, Eritja R, Aviñó A. Biophysical evaluation of antiparallel triplexes for biosensing and biomedical applications. Int J Biol Macromol 2024; 264:130540. [PMID: 38430998 DOI: 10.1016/j.ijbiomac.2024.130540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Polypyrimidine sequences can be targeted by antiparallel clamps forming triplex structures either for biosensing or therapeutic purposes. Despite its successful implementation, their biophysical properties remain to be elusive. In this work, PAGE, circular dichroism and multivariate analysis were used to evaluate the properties of PPRHs directed to SARS-CoV-2 genome. Several PPRHs designed to target various polypyrimidine sites within the viral genome were synthesized. These PPRHs displayed varying binding affinities, influenced by factors such as the length of the PPRH and its GC content. The number and position of pyrimidine interruptions relative to the 4 T loop of the PPRH was found a critical factor, affecting the binding affinity with the corresponding target. Moreover, these factors also showed to affect in the intramolecular and intermolecular equilibria of PPRHs alone and when hybridized to their corresponding targets, highlighting the polymorphic nature of these systems. Finally, the functionality of the PPRHs was evaluated in a thermal lateral flow sensing device showing a good correspondence between their biophysical properties and detection limits. These comprehensive studies contribute to the understanding of the critical factors involved in the design of PPRHs for effective targeting of biologically relevant genomes through the formation of triplex structures under neutral conditions.
Collapse
Affiliation(s)
- Arnau Domínguez
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Carlos Cuestas-Ayllón
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain
| | - Valeria Grazu
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain
| | - Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Enrique J Calderon
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Jesús Martínez de la Fuente
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas (CSIC), 50018 Zaragoza, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
4
|
Wang J, Han J, Wang J, Lv X, Fan D, Dong S. A cost-effective, "mix & act" G-quadruplex/Cu (II) metal-nanozyme-based ratiometric fluorescent platform for highly sensitive and selective cysteine/bleomycin detection and multilevel contrary logic computing. Biosens Bioelectron 2024; 244:115801. [PMID: 37924655 DOI: 10.1016/j.bios.2023.115801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Versatile nanozymes with fascinating catalytic properties provide inspiring and effective options for biosensing and pharmaceutical analysis. Herein, we report the first nanozyme-based ratiometric fluorescent platform for cysteine (Cys) and bleomycin (BLM) detection by harnessing the cost-effective and "mix & act" G-quadruplex/Cu(II) (G4/Cu) metal-nanozyme with satisfactory peroxidase-like activity, which was fully proven by circular dichroism (CD), electron paramagnetic resonance (EPR) spectra and reactive oxygen species (ROS) scavenging experiments. Based on the catalytic oxidation of G4/Cu metal-nanozyme toward two fluorescent substrates (Amplex Ultrared, AU; Scopoletin, Sc) with opposite responses in the presence of H2O2, and the specific interaction between Cu2+ and targets, we achieved the highly sensitive detection of Cys and BLM. Through recording the fluorescence changes of AU (emission at 590 nm, F590) and Sc (emission at 465 nm, F465), we obtained good linear relationships between ratiometric fluorescence values (F590/F465) and variable contents of targets, resulting in the competitive LODs of Cys (6.7 nM) and BLM (10 nM), respectively. Moreover, this platform presented high selectivity (without the need for masking agent) and acceptable performance in human serum samples. Furthermore, a library of DNA contrary logic pairs (CLPs) and multilevel concatenated circuits were fabricated based on the reverse dual-output of the above platform, enriching the building blocks of biocomputing. This work not only enlightened the design of affordable, "mix & act" type nanozyme-based ratiometric biosensors with high reliability, but also facilitated the pluralistic application of nucleic acid-templated nanozymes to innovative biocomputing.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
5
|
Han J, Lv X, Zhang Y, Wang J, Fan D, Dong S. Toward Minute-Level DNA Computing: An Ultrafast, Cost-Effective, and Universal System for Lighting Up Various Concurrent DNA Logic Nanodevices (CDLNs) and Concatenated Circuits. Anal Chem 2023; 95:16725-16732. [PMID: 37906527 DOI: 10.1021/acs.analchem.3c03793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
DNA logic nanodevices are powerful tools for both molecular computing tasks and smart bioanalytical applications. Nevertheless, the hour-level operation time and high cost caused by the frequent redesign/reconstruction of gates, tedious strand-displacement reaction, and expensive labeled probes (or tool enzymes) in previous works are ineluctable drawbacks. Herein, we report an ultrafast and cost-effective system for engineering concurrent DNA logic nanodevices (CDLNs) by combining polythymine CuNCs with SYBR Green I (SG I) as universal dual-output producers. Particularly, benefiting from the concomitant minute-level quick response of both unlabeled illuminators and the exquisite strand-displacement-free design, all CDLNs including contrary logic pairs (YES∧NOT, OR∧NOR, and Even∧Odd number classifier), noncontrary ones (IDE∧IMP, OR∧NAND), and concatenated circuits are implemented in just 10 min via a "one-stone-two-birds" method, resulting in only 1/12 the operation time and 1/4 the cost needed in previous works, respectively. Moreover, all of them share the same threshold value, and the dual output can be easily visualized by the naked eye under a portable UV lamp, indicating the universality and practicality of this system. Furthermore, by exploiting the "positive/negative cross-verification" advantages of concurrent contrary logic, the smart in vitro analysis of the polyadenine strand and its polymerase is realized, providing novel molecular tools for the early diagnosis of cancer-related diseases.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
6
|
Han J, Ding Y, Lv X, Zhang Y, Fan D. Integration of G-Quadruplex and Pyrene as a Simple and Efficient Ratiometric Fluorescent Platform That Programmed by Contrary Logic Pair for Highly Sensitive and Selective Coralyne (COR) Detection. BIOSENSORS 2023; 13:bios13040489. [PMID: 37185564 PMCID: PMC10136222 DOI: 10.3390/bios13040489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
The effective and accurate detection of the anticancer drug coralyne (COR) is highly significant for drug quality control, medication safety and good health. Although various COR sensors have been reported in recent years, previous ones can only exhibit single-signal output (turn ON or turn OFF) with poor reliability and anti-interference ability. Therefore, exploring novel platform with dual-signal response for COR detection is urgently needed. Herein, we reported the first ratiometric fluorescent platform for highly sensitive and selective COR detection by integrating G-quadruplex (G4) and Pyrene (Py) as signal probes and harnessing A-COR-A interaction. In the absence of COR, the platform shows a low fluorescence signal of PPIX (F642) and a high one of Py monomer (F383). With the addition of COR, two delicately designed poly-A ssDNAs will hybridize with each other via A-COR-A coordination to form complete G4, yielding the increased fluorescence signal of PPIX and the decreased one of Py due to the formation of Py excimer. Based on the above mechanism, we constructed a simple and efficient sensor that could realize the ratiometric fluorescent detection of COR with high sensitivity and selectivity. A linear relationship between F642/F383 and COR's concentration is obtained in the range from 1 nM to 8 μM. And the limit of detection of COR could reach to as low as 0.63 nM without any amplification, which is much lower than that of most COR sensors reported so far. Notably, the logical analysis of COR can be carried out under the control of a "YES-NOT" contrary logic pair, enabling the smart dual-channel response with an adequate S/N ratio and improved reliability and anti-interference ability. Moreover, this system also presents satisfactory performance in fetal bovine serum (FBS) samples.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yaru Ding
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
7
|
Yao C, de Silva AP. A Tool, an App and a Field: Fluorescent PET Sensors, Blood Electrolyte Analysis and Molecular Logic as Products of Supramolecular Photoscience from Northern Ireland and Sri Lanka. Chempluschem 2022; 88:e202200362. [PMID: 36456470 DOI: 10.1002/cplu.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Indexed: 12/05/2022]
Abstract
The general tool of fluorescent PET (photoinduced electron transfer) sensors/switches - a molecular design principle with engineering features - is outlined, with the aid of frontier orbital energy diagrams. Fluorophores such as anthracene, 1,3-diaryl-Δ2 -pyrazolines and 4-amino-1,8-naphthalimides are employed within this system, alongside receptors such as amines, carboxylates, crown ethers and amino acids. This tool appealed to a multinational corporation for building a medical analyzer for electrolytes such as Na+ , K+ , Ca2+ and gases like CO2 , which became a commercially successful application. Finally, the tool was a springboard for chemistry to cross into computer science. The field of molecular logic can elucidate how molecules inside us handle information. Molecular examples of the simplest logic gates such as YES, NOT, OR, AND are described. A case of a human-level computation - visual edge detection - is also included.
Collapse
Affiliation(s)
- Chao‐Yi Yao
- School of Chemistry and Chemical Engineering Queen's University Belfast BT9 5AG Northern Ireland
| | - A. Prasanna de Silva
- School of Chemistry and Chemical Engineering Queen's University Belfast BT9 5AG Northern Ireland
| |
Collapse
|
8
|
Colorimetric detection of viral RNA fragments based on an integrated logic-operated three-dimensional DNA walker. Biosens Bioelectron 2022; 217:114714. [PMID: 36116222 DOI: 10.1016/j.bios.2022.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Timely and accurate detection of virus is crucial for preventing spread of disease and early treatment of the infected cases. Herein we design an integrated logic-operated three-dimensional DNA walker for colorimetric detection of viral RNA fragments, by taking SARS-CoV-2 as an example. The DNA walker is composed of small amounts of dually-blocked walking strands and large amounts of dual-stem-loop track strands on gold nanoparticles. The walking strand contains a swing arm domain and a DNAzyme domain blocked at both sides of catalytic core, while the track strand contains a substrate domain located at the peripheral larger loop. Only the presence of both ORF1ab and N RNA fragments can fully de-block the walking strand, which then continuously hybridizes with track strands and cleaves them by DNAzyme-catalyzed hydrolysis. As the cleavage of track strands from long-stranded, double stem-loop structure to short-stranded, linear sequence, the DNA walker shows much lowered stability due to decreased negative charge density and diminished steric repulsion, which then gets aggregated at high salt concentration, accompanied by a visible color change. The colorimetric DNA walker detects RNA fragments down to 1 nM, responds dual viral genes in a "AND" logic way, and shows high specificity to target sequence. It can further detect large nucleic acids containing ORF1ab and N sequences, and reach 200 copies/mL detection limit by coupling a simple upstream amplification of sample. The method may provide a convenient way for reliable detection of viral RNA.
Collapse
|
9
|
Han J, Wang J, Wang J, Fan D, Dong S. Recent advancements in coralyne (COR)-based biosensors: Basic principles, various strategies and future perspectives. Biosens Bioelectron 2022; 210:114343. [PMID: 35561578 DOI: 10.1016/j.bios.2022.114343] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/02/2022]
Abstract
As a kind of protoberberine alkaloid heterocyclic analogues, coralyne (COR) has been reported to exhibit superior antileukemic ability and used as anticancer drug agent. While, the severe hazards and side effects caused by unreasonable use have made its accurate detection more and more important. Although scientists have explored various methods to sense COR and other related targets, a systematical review which could not only elaborate recent developments and analyze current challenges of COR-based biosensors, but also present future perspective has not been reported and is urgently needed. In this review, we attempt to summarize latest advancements in COR-based biosensors in recent decade. Firstly, the operating principles, advantages and disadvantages of various strategies for COR detection (colorimetric, fluorescent, electrochemical and other ones) are comprehensively demonstrated and reviewed. Secondly, COR-assisted biosensors for detection of different non-COR targets (heparin, toxins, nucleic acids and other small molecules) are further discussed. Finally, we analyze current challenges and also suggest potential perspectives for this area.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jun Wang
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|
10
|
Zheng B, Dong H, Zhu J, Zhang Q, Yang S, Yao D. A rational design of a cascaded DNA circuit for nanoparticle assembly and its application in the discrimination of single-base changes. J Mater Chem B 2022; 10:4561-4567. [PMID: 35621087 DOI: 10.1039/d2tb00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the field of dynamic DNA nanotechnology, a designable DNA assembly circuit based on the toehold-mediated strand displacement reaction has demonstrated its ability to program the self-assembly of nanoparticles. However, the laborious work for the modification of nanoparticles with oligonucleotides, the long assembly time, and the circuit leakage prevent its further and scalable applications. To this end, cascaded circuits composed of two recycling circles are rationally designed in this study. Through the pre-initiation of the autonomous reaction, nanoparticles as sensing elements and no additionally exposed bases on the substrate hybridized with fuel strand, the real assembly time and signal leakage for diagnostic application can be effectively reduced and eliminated, thus offering a promising methodology for future point-of-care testing.
Collapse
Affiliation(s)
- Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, P. R. China.
| | - Huaze Dong
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, P. R. China.
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, P. R. China.
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, P. R. China.
| | - Shiwei Yang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, Anhui 230061, P. R. China.
| | - Dongbao Yao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
11
|
Chen J, Fu S, Zhang C, Liu H, Su X. DNA Logic Circuits for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108008. [PMID: 35254723 DOI: 10.1002/smll.202108008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Cancer diagnosis and therapeutics (theranostics) based on the tumor microenvironment (TME) and biomarkers has been an emerging approach for precision medicine. DNA nanotechnology dynamically controls the self-assembly of DNA molecules at the nanometer scale to construct intelligent DNA chemical reaction systems. The DNA logic circuit is a particularly emerging approach for computing within the DNA chemical systems. DNA logic circuits can sensitively respond to tumor-specific markers and the TME through logic operations and signal amplification, to generate detectable signals or to release anti-cancer agents. In this review, the fundamental concepts of DNA logic circuits are clarified, the basic modules in the circuit are summarized, and how this advanced nano-assembly circuit responds to tumor-related molecules, how to perform logic operations, to realize signal amplification, and selectively release drugs through discussing over 30 application examples, are demonstrated. This review shows that DNA logic circuits have powerful logic judgment and signal amplification functions in improving the specificity and sensitivity of cancer diagnosis and making cancer treatment controllable. In the future, researchers are expected to overcome the existing shortcomings of DNA logic circuits and design smarter DNA devices with better biocompatibility and stability, which will further promote the development of cancer theranostics.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shengnan Fu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyi Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiyu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|