1
|
Zhou D, Zhang G, Li J, Zhuang Z, Shen P, Fu X, Wang L, Qian J, Qin A, Tang BZ. Near-Infrared II Agent with Excellent Overall Performance for Imaging-Guided Photothermal Thrombolysis. ACS NANO 2024; 18:25144-25154. [PMID: 39190833 DOI: 10.1021/acsnano.4c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Near-infrared II (NIR-II) imaging and photothermal therapy hold tremendous potential in precision diagnosis and treatment within biological organisms. However, a significant challenge is the shortage of NIR-II fluorescent probes with both high photothermal conversion coefficient (PCE) and fluorescence quantum yield (ΦF). Herein, we address this issue by integrating a large conjugated electron-withdrawing core, multiple rotors, and multiple alkyl chains into a molecule to successfully generate a NIR-II agent 4THTPB with excellent PCE (87.6%) and high ΦF (3.2%). 4THTPB shows a maximum emission peak at 1058 nm, and the emission tail could extend to as long as 1700 nm. These characteristics make its nanoparticles (NPs) perform well in NIR-II high-resolution angiography, thereby allowing for precise diagnosis of thrombus through NIR-II imaging and enabling efficient photothermal thrombolysis. This work not only furnishes a NIR-II agent with excellent overall performance but also provides valuable guidance for the design of high-performance NIR-II agents.
Collapse
Affiliation(s)
- Daming Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Li
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Lirong Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Hong Kong Branch of the Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Xia J, Xie S, Huang Y, Wu XX, Lu B. Emerging A-D-A fused-ring photosensitizers for tumor phototheranostics. Chem Commun (Camb) 2024; 60:8526-8536. [PMID: 39039905 DOI: 10.1039/d4cc02596b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
As we all know, cancer is still a disease that we are struggling against. Although the traditional treatment options are still the mainstream in clinical practice, emerging phototheranostics technologies based on photoacoustic or fluorescence imaging-guided phototherapy also provide a new exploration direction for non-invasive, low-risk and highly efficient cancer treatment. Photosensitizers are the core materials to accomplish this mission. Recently, more attention has been paid to the emerging A-D-A fused-ring photosensitizers. A-D-A fused-ring photosensitizers display strong and wide absorption spectra, high photostability and easy molecular modification. Since this type of photosensitizer was first used for tumor therapy in 2019, its application boundaries are constantly expanding. Therefore, in this feature article, from the perspective of molecular design, we focused on the development of these molecules for application in phototheranostics over the past five years. The effects of tiny structural changes on their photophysical properties are discussed in detail, which provides a way for structural optimization of the subsequent A-D-A photosensitizers.
Collapse
Affiliation(s)
- Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Shaoqi Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xin-Xing Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
3
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
4
|
Xia J, Quan H, Huang Y, Zhang Z, Zhang Y, Lu B. Side Chain Programming Synchronously Enhances the Photothermal Conversion Efficiency and Photodynamic Activity of A-D-A Photosensitizers. ACS Macro Lett 2024; 13:489-494. [PMID: 38607650 DOI: 10.1021/acsmacrolett.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Synchronously improving the photothermal conversion efficiency and photodynamic activity of organic small molecule photosensitizers is crucial for their further wide application in cancer treatment. Recently, the emerging A-D-A photosensitizer-based phototherapy systems have attracted great interest due to their plentiful inherent merits. Herein, we propose a design strategy for A-D-A photosensitizers with synchronously enhanced photothermal conversion and reactive oxygen species (ROS) generation efficiencies. Side chain programming is carried out to design three A-D-A photosensitizers (IDT-H, IDT-Br, IDT-I) containing hexyl, bromohexyl, and iodohexyl side chains, respectively. Theoretical calculations confirm that a bulky iodine atom could weaken the intermolecular π-π stacking and enhance spin-orbit coupling constants of IDT-I. These molecular mechanisms enable IDT-I nanoparticles (NPs) to exhibit 2.4-fold and 1.7-fold higher ROS generation efficiency than that of IDT-H NPs and IDT-Br NPs, respectively, as well as the highest photothermal conversion efficiency. Both the experimental results in vitro and in vivo verify that IDT-I NPs are perfectly qualified for the mission of photothermal and photodynamic synergistic therapy. Therefore, in this contribution, we provide a promising perspective for the design of A-D-A photosensitizers with simultaneously improved photothermal and photodynamic therapy ability.
Collapse
Affiliation(s)
- Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuehua Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
5
|
Lu B, Xia J, Quan H, Huang Y, Zhang Z, Zhan X. End Group Engineering for Constructing A-D-A Fused-Ring Photosensitizers with Balanced Phototheranostics Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307664. [PMID: 37972254 DOI: 10.1002/smll.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Phototheranostics continues to flourish in cancer treatment. Due to the competitive relationships between these photophysical processes of fluorescence emission, photothermal conversion, and photodynamic action, it is critical to balance them through subtle photosensitizer designs. Herein, it is provided a useful guideline for constructing A-D-A photosensitizers with superior phototheranostics performance. Various cyanoacetate group-modified end groups containing ester side chains of different length are designed to construct a series of A-D-A photosensitizers (F8CA1 ∼ F8CA4) to study the structure-property relationships. It is surprising to find that the photophysical properties of A-D-A photosensitizers can be precisely regulated by these tiny structural changes. The results reveal that the increase in the steric hindrance of ester side chains has positive impacts on their photothermal conversion capabilities, but adverse impacts on the fluorescence emission and photodynamic activities. Notably, these tiny structural changes lead to their different aggregation behavior. The molecule mechanisms are detailedly explained by theoretical calculations. Finally, F8CA2 nanoparticles with more balanced photophysical properties perform well in fluorescence imaging-guided photothermal and type I&II photodynamic synergistic cancer therapy, even under hypoxic conditions. Therefore, this work provides a novel practicable construction strategy for desired A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, P. R. China
| |
Collapse
|
6
|
Escalona Hernández V, Padilla-Martínez II, García RAV, Rodríguez MAV, Hernández-Ortiz OJ. Synthesis, and evaluation of photophysical properties of a potential DPP-derived photosensitizer for photodynamic therapy with D-A-D architecture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:11. [PMID: 38300359 PMCID: PMC10834609 DOI: 10.1007/s10856-024-06776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
The study of a macromolecule derived from DPP and triphenylamine, (DPP-BisTPA) by computational chemistry, its synthesis by direct arylation, optical characterization (UV-Vis and fluorescence) and electrochemistry (cyclic voltammetry), as well as its evaluation as a generator of reactive oxygen species indirectly, through the degradation of uric acid. The results obtained by DFT using B3LYP/6-31G (d, p) and TD-DFT using CAM-B3LYP/6-31G (d, p) reveal values of energy levels of the first singlet and triplet excited state that indicate a possible intersystem crossover and the possible generation of reactive oxygen species by a type I mechanism. The compound presents an absorption region within the phototherapeutic window. The electrochemical bandgap is 1.64 eV which suggests a behavior as a semiconductor. DPP-BisTPa were processed as hemispherical nanoparticles with a size around 100 nm, and NPOs were evaluated as a photosensitizer with a ROS generation yield of 4% using a photodynamic therapy flashlight as the light source.
Collapse
Affiliation(s)
- Vanessa Escalona Hernández
- Área Académica de Ciencias de la Tierra y Materiales, Carretera Pachuca-Tulancingo Km, Universidad Autónoma del Estado de Hidalgo (UAEH), 4.5.C.P. 42184. Ciudad del Conocimiento, Mineral de la Reforma, Hgo, México
| | - Itzia Irene Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias de la Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la laguna Ticomán, Ciudad de México, 07340, México.
| | - Rosa Angeles Vázquez García
- Área Académica de Ciencias de la Tierra y Materiales, Carretera Pachuca-Tulancingo Km, Universidad Autónoma del Estado de Hidalgo (UAEH), 4.5.C.P. 42184. Ciudad del Conocimiento, Mineral de la Reforma, Hgo, México
| | - María Aurora Veloz Rodríguez
- Área Académica de Ciencias de la Tierra y Materiales, Carretera Pachuca-Tulancingo Km, Universidad Autónoma del Estado de Hidalgo (UAEH), 4.5.C.P. 42184. Ciudad del Conocimiento, Mineral de la Reforma, Hgo, México
| | - Oscar Javier Hernández-Ortiz
- Área Académica de Ciencias de la Tierra y Materiales, Carretera Pachuca-Tulancingo Km, Universidad Autónoma del Estado de Hidalgo (UAEH), 4.5.C.P. 42184. Ciudad del Conocimiento, Mineral de la Reforma, Hgo, México.
- Laboratorio de Química Supramolecular y Nanociencias de la Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la laguna Ticomán, Ciudad de México, 07340, México.
| |
Collapse
|
7
|
Xia J, Wang J, Zhao Q, Lu B, Yao Y. Dual-Responsive Drug-Delivery System Based on PEG-Functionalized Pillararenes Containing Disulfide and Amido Bonds for Cancer Theranostics. Chembiochem 2023; 24:e202300513. [PMID: 37610867 DOI: 10.1002/cbic.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
The construction of a smart drug-delivery system based on amphiphilic pillararenes with multiple responsiveness properties has become an important way to improve the efficacy of tumor chemotherapy. Here, a new PEG-functionalized pillararene (EtP5-SS-PEG) containing disulfide and amido bonds was designed and synthesized, which has been used to construct a novel supramolecular nanocarrier through a host-guest interaction with a perylene diimide derivative (PDI-2NH4 ) and their supramolecular self-assembly. This nanocarrier showed good drug loading capability, and dual stimulus responsiveness to enzyme and GSH (glutathione). After loading of doxorubicin (DOX), the prepared nanodrugs displayed efficient DOX release and outstanding cancer theranostics ability.
Collapse
Affiliation(s)
- Jiachen Xia
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jian Wang
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Qin Zhao
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No.9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
8
|
Lu B, Huang Y, Quan H, Xia J, Wang J, Ding Y, Wang Y, Yao Y. Mitochondria-Targeting Multimodal Phototheranostics Based on Triphenylphosphonium Cation Modified Amphiphilic Pillararenes and A-D-A Fused-Ring Photosensitizers. ACS Macro Lett 2023; 12:1365-1371. [PMID: 37737579 DOI: 10.1021/acsmacrolett.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Tumor-targeting phototheranostics has gradually developed as a powerful tool for the precise diagnosis and treatment of cancer. However, the designs of tumor-targeting phototheranostics agents with excellent multimodal phototherapy and fluorescence imaging (FLI) capability, as well as very few components, are still scarce and challenging for cancer treatment. Herein, a mitochondria-targeting multimodal phototheranostics system has been constructed by combining a designed amphiphilic pillararene WP5-2PEG-2TPP and the A-D-A fused-ring photosensitizer F8CA5. WP5-2PEG-2TPP is constructed by attaching the triphenylphosphonium cations to our previously reported dual PEG-functionalized amphiphilic pillararene, which can self-assemble into regular spherical nanocarriers with outstanding mitochondria targeting and water solubility. The A-D-A photosensitizer F8CA5 containing two methyl cyanoacetate group modified end groups displays superior photothermal conversion ability and dual type I/II photodynamic activity as well as strong NIR fluorescence emission. Through their strong union, multifunctional mitochondria-targeting phototheranostics agent F8CA5 NPs were obtained to be applied into FLI-guided synergistic photothermal and type I/II photodynamic therapy. As a result, F8CA5 NPs show good mitochondria-targeting and phototherapy effects in various tumor cells. Not only that, they can combat tumor hypoxia, which hinders the efficacy of photodynamic therapy. Therefore, this work provides a creative ideal for the construction of multifunctional tumor-targeting phototheranostic agents with excellent performance.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jiacheng Xia
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
9
|
Lu B, Xia J, Huang Y, Yao Y. The design strategy for pillararene based active targeted drug delivery systems. Chem Commun (Camb) 2023; 59:12091-12099. [PMID: 37740359 DOI: 10.1039/d3cc04021f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Pillararenes have columnar architectures with electron-rich cavities to endow themselves with unique host-guest complexation capability. Easy structural modifiability facilitates them to be used in many applications. Currently, pillararene based drug delivery systems (DDSs) have been developed as a powerful tool for precise diagnosis and treatment of cancer. Various functional guest molecules could be integrated with pillararenes to construct nanomaterials for cancer chemotherapy, phototherapy and chemodynamic therapy. In order to improve cancer therapy efficacy, active targeted DDSs have become particularly important. Benefiting from the good host-guest properties and structural variability of pillararenes, tumor targeting groups could be easily introduced into pillararene based DDSs to realize precise drug delivery at tumor sites. In this feature article, we provide a comprehensive summary of the present design strategy for pillararene based active targeted DDSs, which can be classified into three types namely host-guest complexation, charge reversal and targeted group modified pillararenes. Some important examples are selected to for a detailed discussion on their respective strengths and weaknesses.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jiachen Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
10
|
Quan H, Huang Y, Xia J, Yang J, Lu B, Liu P, Yao Y. Integrating Pillar[5]arene and BODIPY for a Supramolecular Nanoplatform To Achieve Synergistic Photodynamic Therapy and Chemotherapy. Chembiochem 2023; 24:e202300461. [PMID: 37463099 DOI: 10.1002/cbic.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
BODIPY photosensitizers have been integrated with a hypoxia-activated prodrug to achieve synergistic photodynamic therapy (PDT) and chemotherapy. A novel BODIPY derivative BDP-CN was designed and synthesized. It had two cyano groups to make it complex well with a water-soluble pillar[5]arene. Their association constant was calculated to be (6.8±0.9)×106 M-1 . After self-assembly in water, regular spherical nanocarriers can be formed; these were used to encapsulate the hypoxia-activated prodrug tirapazamine (TPZ). BDP-CN displayed excellent photodynamic activity to complete PDT. In this process, O2 can be continuously consumed to activate TPZ to allow it to be converted to a benzotriazinyl (BTZ) radical with high cytotoxicity to complete chemotherapy. As a result, the formed nanoparticles showed excellent synergistic photodynamic therapy and chemotherapy efficacy. The synergistic therapy mechanism is discussed in detail.
Collapse
Affiliation(s)
- Hui Quan
- School of Science, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yuying Huang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jiacheng Xia
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Jiawen Yang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Peisheng Liu
- School of Science, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
11
|
Zhang G, Chen X, Chen X, Du K, Ding K, He D, Ding D, Hu R, Qin A, Tang BZ. Click-Reaction-Mediated Chemotherapy and Photothermal Therapy Synergistically Inhibit Breast Cancer in Mice. ACS NANO 2023; 17:14800-14813. [PMID: 37486924 DOI: 10.1021/acsnano.3c03005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The development of functional materials for tumor immunogenicity enhancement is desirable for overcoming the low therapeutic efficiency and easy metastasis during tumor treatments. Herein, the thermoresponsive nanoparticles composed of photothermal agent (PTA) and click reactive reagent are developed for enhanced immunotherapy application. A Ni-bis(dithiolene)-containing PTA with intense near-infrared absorption and efficient photothermal conversion is developed for thermoresponsive nanoparticles construction. The generated heat by encapsulated PTA further induces the phase transition of thermoresponsive nanoparticles with the release of chemotherapy reagent to react with the amino groups on functional proteins, realizing PTT and chemotherapy simultaneously. Moreover, the immunogenic cell death (ICD) of cancer cells evoked by PTT could be further enhanced by the released reactive reagent. As a result, the synergistic effect of photothermal treatment and reaction-mediated chemotherapy can suppress the growth of a primary tumor, and the evoked ICD could further activate the immune response with the suppression of a distant tumor. This synergistic treatment strategy provides a reliable and promising approach for cancer immunotherapy in clinic.
Collapse
Affiliation(s)
- Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xuemei Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xu Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Kaihong Du
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of SooChow University, Jiangsu 215006, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of SooChow University, Jiangsu 215006, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172 Guangdong, China
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Wang Q, Zhang X, Tang Y, Xiong Y, Wang X, Li C, Xiao T, Lu F, Xu M. High-Performance Hybrid Phototheranostics for NIR-IIb Fluorescence Imaging and NIR-II-Excitable Photothermal Therapy. Pharmaceutics 2023; 15:2027. [PMID: 37631241 PMCID: PMC10457990 DOI: 10.3390/pharmaceutics15082027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Photothermal therapy operated in the second near-infrared (NIR-II, 1000-1700 nm) window and fluorescence imaging in the NIR-IIb (1500-1700 nm) region have become the most promising techniques in phototheranostics. Their combination enables simultaneous high-resolution optical imaging and deep-penetrating phototherapy, which is essential for high-performance phototheranostics. Herein, carboxyl-functionalized small organic photothermal molecules (Se-TC) and multi-layered NIR-IIb emissive rare-earth-doped nanoparticles (NaYF4:Yb,Er,Ce@NaYF4:Yb,Nd@NaYF4, RENP) were rationally designed and successfully synthesized. Then, high-performance hybrid phototheranostic nanoagents (Se-TC@RENP@F) were easily constructed through the coordination between Se-TC and RENP and followed by subsequent F127 encapsulation. The carboxyl groups of Se-TC can offer strong binding affinity towards rare-earth-doped nanoparticles, which help improving the stability of Se-TC@RENP@F. The multilayered structure of RENP largely enhance the NIR-IIb emission under 808 nm excitation. The obtained Se-TC@RENP@F exhibited high 1064 nm absorption (extinction coefficient: 24.7 L g-1 cm-1), large photothermal conversion efficiency (PCE, 36.9%), good NIR-IIb emission (peak: 1545 nm), as well as great photostability. Upon 1064 nm laser irradiation, high hyperthermia can be achieved to kill tumor cells efficiently. In addition, based on the excellent NIR-IIb emission of Se-TC@RENP@F, in vivo angiography and tumor detection can be realized. This work provides a distinguished paradigm for NIR-IIb-imaging-guided NIR-II photothermal therapy and establishes an artful strategy for high-performance phototheranostics.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinmin Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Youguang Tang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yanwei Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chunlai Li
- Department of Liver Surgery, Shanghai Institute of Transplantation, Shanghai Engineering Research Center of Transplantation and Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Feng Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
13
|
Lu B, Wang L, Tang H, Cao D. Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. J Mater Chem B 2023; 11:4600-4618. [PMID: 37183673 DOI: 10.1039/d3tb00545c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) with an oxygen-dependent character is a noninvasive therapeutic method for cancer treatment. However, its clinical therapeutic effect is greatly restricted by tumor hypoxia. What's more, both PDT-mediated oxygen consumption and microvascular damage aggravate tumor hypoxia, thus, further impeding therapeutic outcomes. Compared to type II PDT with high oxygen dependence and high oxygen consumption, type I PDT with less oxygen consumption exhibits great potential to overcome the vicious hypoxic plight in solid tumors. Type I photosensitizers (PSs) are significantly important for determining the therapeutic efficacy of PDT, which performs an electron transfer photochemical reaction with the surrounding oxygen/substrates to generate highly cytotoxic free radicals such as superoxide radicals (˙O2-) as type I ROS. In particular, the primary precursor (˙O2-) would progressively undergo a superoxide dismutase (SOD)-mediated disproportionation reaction and a Haber-Weiss/Fenton reaction, yielding higher cytotoxic species (˙OH) with better anticancer effects. As a result, developing high-performance type I PSs to treat hypoxic tumors has become more and more important and urgent. Herein, the latest progress of organic type I PSs (such as AIE-active cationic/neutral PSs, cationic/neutral PSs, polymer-based PSs and supramolecular self-assembled PSs) for monotherapy or synergistic therapeutic modalities is summarized. The molecular design principles and strategies (donor-acceptor system, anion-π+ incorporation, polymerization and cationization) are highlighted. Furthermore, the future challenges and prospects of type I PSs in hypoxia-overcoming PDT are proposed.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, China.
| |
Collapse
|
14
|
Wang Y, Tang R, Zhang Y, Dai Y, Zhou Q, Zhou Y, Yan CG, Lu B, Wang J, Yao Y. Pillar[5]arene-Derived Terpyridinepalladium(II) Complex: Synthesis, Characterization, and Application in Green Catalysis. Inorg Chem 2023; 62:7605-7610. [PMID: 37162421 DOI: 10.1021/acs.inorgchem.3c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal nanoparticle catalysts have attracted great interest because they possess high surface-to-volume ratios and exhibit a very large number of catalytically active sites per unit area. However, high surface-to-volume ratios will induce nanoparticle aggregates during the catalytic reactions, making them lose their catalytic activity. In this work, a monoterpyridine-unit-functionalized pillar[5]arene (TP5) was synthesized successfully, which can be used as anchoring sites for the controllable preparation of well-dispersed palladium nanoparticles [TP5/Pd(0) NPs]. The as-prepared TP5/Pd(0) NPs were fully characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, and powder X-ray diffraction. Importantly, the ultrafine TP5/Pd(0) NPs are found to be excellent and reusable catalysts for the reduction of nitrophenols in aqueous solution.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Qixiang Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Youjun Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, P. R. China
| | - Chao-Guo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, P. R. China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
15
|
Lu B, Quan H, Zhang Z, Li T, Wang J, Ding Y, Wang Y, Zhan X, Yao Y. End Group Nonplanarization Enhances Phototherapy Efficacy of A-D-A Fused-Ring Photosensitizer for Tumor Phototherapy. NANO LETTERS 2023; 23:2831-2838. [PMID: 36897125 DOI: 10.1021/acs.nanolett.3c00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Enhancing the phototherapy efficacy of organic photosensitizers through molecular design is a fascinating but challenging task. Herein, we propose a simple design strategy to first realize the generation of superoxide anion radical (O2•-) by A-D-A fused-ring photosensitizers. Through replacing one cyano group of traditional end group with an ester group, we designed a novel nonplanar end group (A unit) to synthesize a novel A-D-A photosensitizer F8CA. In a comparison with its counterpart F8CN with the traditional end group, F8CA displays more loose packing and larger spin-orbit coupling constants. The F8CA nanoparticles showed higher photodynamic activities with the generation capability of singlet oxygen (1O2), hydroxyl radical (•OH), and O2•-, while F8CN nanoparticles could only generate 1O2 and •OH. In addition, F8CA nanoparticles still remain high photothermal conversion efficiency (61%). As a result, F8CA nanoparticles perform well in hypoxia-tolerant tumor phototherapy. This study brings an effective design thought for A-D-A photosensitizers.
Collapse
Affiliation(s)
- Bing Lu
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Hui Quan
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Zhecheng Zhang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Tengfei Li
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| | - Xiaowei Zhan
- School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Yong Yao
- College of Chemistry and Chemical Engineering, Nantong University, No. 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
16
|
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023; 59:3024-3039. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, supramolecular chemistry with its unique properties has received considerable attention in many fields. Supramolecular fluorescent systems constructed on the basis of macrocyclic hosts are not only effective in overcoming the limitations of imaging and diagnostic reagents, but also in enhancing their performances. This paper summarizes the recent advances in supramolecular fluorescent systems based on host-guest interactions and their application in bioimaging and therapy as well as the challenges and prospects in developing novel supramolecular fluorescent systems.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Chen Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
17
|
Yao Y, Li Z, Zhao R. Editorial: Supramolecular cancer therapeutic biomaterials. Front Chem 2023; 11:1162103. [PMID: 36936528 PMCID: PMC10020698 DOI: 10.3389/fchem.2023.1162103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Affiliation(s)
- Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Zhengtao Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Ruibo Zhao
- Department of Materials, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Lu B, Zhang Z, Huang Y, Zhang Y, Wang J, Ding Y, Wang Y, Yao Y. A nanoplatform for mild-temperature photothermal and type I & II photodynamic therapy in the NIR-II biowindow. Chem Commun (Camb) 2022; 58:10353-10356. [PMID: 36004760 DOI: 10.1039/d2cc03248a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current work, we synthesized an A-D-A smallmolecule photosensitizer, denoted as DPTTIC, and a dual PEG-functionalized pillararene, denoted as WP5-8C-2PEG, and used them to construct novel DPTTIC nanoparticles (NPs) displaying NIR II absorption. Under 980 nm-wavelength laser irradiation, DPTTIC NPs performed well in mild-temperature photothermal and type I & II photodynamic anti-tumor therapy.
Collapse
Affiliation(s)
- Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Zhecheng Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuying Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
19
|
Luo Y, Zhang W, Zhao J, Yang MX, Ren Q, Redshaw C, Tao Z, Xiao X. A novel pillar[5]arene-cucurbit[10]uril based host-guest complex: Synthesis, characterization and detection of paraquat. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Lv Q, Ma B, Li W, Fu G, Wang X, Xiao Y. Nanomaterials-Mediated Therapeutics and Diagnosis Strategies for Myocardial Infarction. Front Chem 2022; 10:943009. [PMID: 35873037 PMCID: PMC9301085 DOI: 10.3389/fchem.2022.943009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The alarming mortality and morbidity rate of myocardial infarction (MI) is becoming an important impetus in the development of early diagnosis and appropriate therapeutic approaches, which are critical for saving patients' lives and improving post-infarction prognosis. Despite several advances that have been made in the treatment of MI, current strategies are still far from satisfactory. Nanomaterials devote considerable contribution to tackling the drawbacks of conventional therapy of MI by improving the homeostasis in the cardiac microenvironment via targeting, immune modulation, and repairment. This review emphasizes the strategies of nanomaterials-based MI treatment, including cardiac targeting drug delivery, immune-modulation strategy, antioxidants and antiapoptosis strategy, nanomaterials-mediated stem cell therapy, and cardiac tissue engineering. Furthermore, nanomaterials-based diagnosis strategies for MI was presented in term of nanomaterials-based immunoassay and nano-enhanced cardiac imaging. Taken together, although nanomaterials-based strategies for the therapeutics and diagnosis of MI are both promising and challenging, such a strategy still explores the immense potential in the development of the next generation of MI treatment.
Collapse
Affiliation(s)
- Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boxuan Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wujiao Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yun Xiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Ding Y, Yu W, Wang J, Ma Y, Wang C, Wang Y, Lu B, Yao Y. Intelligent Supramolecular Nanoprodrug Based on Anionic Water-Soluble [2]Biphenyl-Extended-Pillar[6]arenes for Combination Therapy. ACS Macro Lett 2022; 11:830-834. [PMID: 35699267 DOI: 10.1021/acsmacrolett.2c00322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An anionic water-soluble [2]biphenyl-extended-pillar[6]arenes modified with eight ammonium salt ions (AWBpP6) was successfully synthesized to establish a drug-drug conjugate supramolecular nanoprodrug (SNP) with a high drug-loading capacity. This SNP can generate a synergistic triple therapeutic effect of photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy (CT; i.e., PDT-PTT-CT) with excellent biocompatibility.
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Yuxuan Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|