1
|
Investigation of Neuron Latency Modulated by Bilateral Inferior Collicular Interactions Using Whole-Cell Patch Clamp Recording in Brain Slices. Neural Plast 2021; 2021:8030870. [PMID: 34925502 PMCID: PMC8683196 DOI: 10.1155/2021/8030870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
As the final level of the binaural integration center in the subcortical nucleus, the inferior colliculus (IC) plays an essential role in receiving binaural information input. Previous studies have focused on how interactions between the bilateral IC affect the firing rate of IC neurons. However, little is known concerning how the interactions within the bilateral IC affect neuron latency. In this study, we explored the synaptic mechanism of the effect of bilateral IC interactions on the latency of IC neurons. We used whole-cell patch clamp recordings to assess synaptic responses in isolated brain slices of Kunming mice. The results demonstrated that the excitation-inhibition projection was the main projection between the bilateral IC. Also, the bilateral IC interactions could change the reaction latency of most neurons to different degrees. The variation in latency was related to the type of synaptic input and the relative intensity of the excitation and inhibition. Furthermore, the latency variation also was caused by the duration change of the first subthreshold depolarization firing response of the neurons. The distribution characteristics of the different types of synaptic input also differed. Excitatory-inhibitory neurons were widely distributed in the IC dorsal and central nuclei, while excitatory neurons were relatively concentrated in these two nuclei. Inhibitory neurons did not exhibit any apparent distribution trend due to the small number of assessed neurons. These results provided an experimental reference to reveal the modulatory functions of bilateral IC projections.
Collapse
|
2
|
Low-Intensity Ultrasound Causes Direct Excitation of Auditory Cortical Neurons. Neural Plast 2021; 2021:8855055. [PMID: 33883994 PMCID: PMC8041518 DOI: 10.1155/2021/8855055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cochlear implantation is the first-line treatment for severe and profound hearing loss in children and adults. However, deaf patients with cochlear malformations or with cochlear nerve deficiencies are ineligible for cochlear implants. Meanwhile, the limited spatial selectivity and high risk of invasive craniotomy restrict the wide application of auditory brainstem implants. A noninvasive alternative strategy for safe and effective neuronal stimulation is urgently needed to address this issue. Because of its advantage in neural modulation over electrical stimulation, low-intensity ultrasound (US) is considered a safe modality for eliciting neural activity in the central auditory system. Although the neural modulation ability of low-intensity US has been demonstrated in the human primary somatosensory cortex and primary visual cortex, whether low-intensity US can directly activate auditory cortical neurons is still a topic of debate. To clarify the direct effects on auditory neurons, in the present study, we employed low-intensity US to stimulate auditory cortical neurons in vitro. Our data show that both low-frequency (0.8 MHz) and high-frequency (>27 MHz) US stimulation can elicit the inward current and action potentials in cultured neurons. c-Fos staining results indicate that low-intensity US is efficient for stimulating most neurons. Our study suggests that low-intensity US can excite auditory cortical neurons directly, implying that US-induced neural modulation can be a potential approach for activating the auditory cortex of deaf patients.
Collapse
|
3
|
Peng K, Peng YJ, Wang J, Yang MJ, Fu ZY, Tang J, Chen QC. Latency modulation of collicular neurons induced by electric stimulation of the auditory cortex in Hipposideros pratti: In vivo intracellular recording. PLoS One 2017; 12:e0184097. [PMID: 28863144 PMCID: PMC5580910 DOI: 10.1371/journal.pone.0184097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
In the auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from the lower auditory nuclei, contralateral IC, and auditory cortex (AC), and then uploads these inputs to the thalamus and cortex. Meanwhile, the AC modulates the sound signal processing of IC neurons, including their latency (i.e., first-spike latency). Excitatory and inhibitory corticofugal projections to the IC may shorten and prolong the latency of IC neurons, respectively. However, the synaptic mechanisms underlying the corticofugal latency modulation of IC neurons remain unclear. Thus, this study probed these mechanisms via in vivo intracellular recording and acoustic and focal electric stimulation. The AC latency modulation of IC neurons is possibly mediated by pre-spike depolarization duration, pre-spike hyperpolarization duration, and spike onset time. This study suggests an effective strategy for the timing sequence determination of auditory information uploaded to the thalamus and cortex.
Collapse
Affiliation(s)
- Kang Peng
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Jie Peng
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jing Wang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Ming-Jian Yang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Zi-Ying Fu
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Jia Tang
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| | - Qi-Cai Chen
- School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
4
|
The contribution of inferior colliculus activity to the auditory brainstem response (ABR) in mice. Hear Res 2016; 341:109-118. [PMID: 27562195 DOI: 10.1016/j.heares.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 11/21/2022]
Abstract
In mice, the auditory brainstem response (ABR) is frequently used to assess hearing status in transgenic hearing models. The diagnostic value of the ABR depends on knowledge about the anatomical sources of its characteristic waves. Here, we studied the contribution of the inferior colliculus (IC) to the click-evoked scalp ABR in mice. We demonstrate a non-invasive correlate of the IC response that can be measured in the scalp ABR as a slow positive wave P0 with peak latency 7-8 ms when recorded with adequate band-pass filtering. Wave P0 showed close correspondence in latency, magnitude and shape with the sustained part of evoked spiking activity and local field potentials (LFP) in the central nucleus of the IC. In addition, the onset peaks of the IC response were related temporally to ABR wave V and to some extent to wave IV. This relation was further supported by depth-dependent modulation of the shape of ABR wave IV and V within the IC suggesting generation within or in close vicinity to the IC. In conclusion, the slow ABR wave P0 in the scalp ABR may represent a complementary non-invasive marker for IC activity in the mouse. Further, the latency of synchronized click-evoked activity in the IC supports the view that IC contributes to ABR wave V, and possibly also to ABR wave IV.
Collapse
|
5
|
Wang N, Wang X, Yang X, Tang J, Xiao Z. Interdependent effects of sound duration and amplitude on neuronal onset response in mice inferior colliculus. Brain Res 2014; 1543:209-22. [PMID: 24201024 DOI: 10.1016/j.brainres.2013.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
In this study, we adopted iso-frequency pure tone bursts to investigate the interdependent effects of sound amplitude/intensity and duration on mice inferior colliculus (IC) neuronal onset responses. On the majority of the sampled neurons (n=57, 89.1%), sound amplitude and duration had effects on the neuronal response to each other by showing complex changes of the rat-intensity function/duration selectivity types and/or best amplitudes (BAs)/durations (BDs), evaluated by spike counts. These results suggested that the balance between the excitatory and inhibitory inputs set by one acoustic parameter, amplitude or duration, affected the neuronal spike counts responses to the other. Neuronal duration selectivity types were altered easily by the low-amplitude sounds while the changes of rate-intensity function types had no obvious preferred stimulus durations. However, the first spike latencies (FSLs) of the onset response neurons were relative stable to iso-amplitude sound durations and changing systematically along with the sound levels. The superimposition of FSL and duration threshold (DT) as a function of stimulus amplitude after normalization indicated that the effects of the sound levels on FSLs are considered on DT actually.
Collapse
Affiliation(s)
- Ningqian Wang
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiao Wang
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Yang
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jie Tang
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Wang N, Bo L, Zhang F, Tan X, Yang X, Xiao Z. An approach to identify the functional transduction and transmission of an activated pathway. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Ramsey LCB, Sinha SR, Hurley LM. 5-HT1A and 5-HT1B receptors differentially modulate rate and timing of auditory responses in the mouse inferior colliculus. Eur J Neurosci 2010; 32:368-79. [PMID: 20646059 DOI: 10.1111/j.1460-9568.2010.07299.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is a physiological signal that translates both internal and external information about behavioral context into changes in sensory processing through a diverse array of receptors. The details of this process, particularly how receptors interact to shape sensory encoding, are poorly understood. In the inferior colliculus, a midbrain auditory nucleus, 5-HT1A receptors have suppressive and 5-HT1B receptors have facilitatory effects on evoked responses of neurons. We explored how these two receptor classes interact by testing three hypotheses: that they (i) affect separate neuron populations; (ii) affect different response properties; or (iii) have different endogenous patterns of activation. The first two hypotheses were tested by iontophoretic application of 5-HT1A and 5-HT1B receptor agonists individually and together to neurons in vivo. 5-HT1A and 5-HT1B agonists affected overlapping populations of neurons. During co-application, 5-HT1A and 5-HT1B agonists influenced spike rate and frequency bandwidth additively, with each moderating the effect of the other. In contrast, although both agonists individually influenced latencies and interspike intervals, the 5-HT1A agonist dominated these measurements during co-application. The third hypothesis was tested by applying antagonists of the 5-HT1A and 5-HT1B receptors. Blocking 5-HT1B receptors was complementary to activation of the receptor, but blocking 5-HT1A receptors was not, suggesting the endogenous activation of additional receptor types. These results suggest that cooperative interactions between 5-HT1A and 5-HT1B receptors shape auditory encoding in the inferior colliculus, and that the effects of neuromodulators within sensory systems may depend nonlinearly on the specific profile of receptors that are activated.
Collapse
|
8
|
Tan X, Wang X, Yang W, Xiao Z. First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice. Hear Res 2007; 235:90-104. [PMID: 18037595 DOI: 10.1016/j.heares.2007.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 10/06/2007] [Accepted: 10/10/2007] [Indexed: 11/27/2022]
Abstract
Spike counts (SC) or, spike rate and first spike latency (FSL), are both used to evaluate the responses of neurons to amplitudes and frequencies of acoustic stimuli. However, it is unclear which one is more suitable as a parameter for evaluating the responses of neurons to acoustic amplitudes and frequencies, since systematic comparisons between SC and FSL tuned to different amplitudes and frequencies, are scarce. This study systematically compared the precision and stability (i.e., the resolution and the coefficient variation, CV) of SC- and FSL-function as frequencies and amplitudes in the inferior colliculus of mice. The results showed that: (1) the SC-amplitude functions were of diverse shape (monotonic, nonmonotonic and saturated) whereas the FSL-amplitude functions were in close registration, in which FSL decreased with the increase of amplitude and no paradoxical (an increase in FSL with increasing amplitude) or constant (an independence of FSL on amplitude) neuron was observed; (2) the discriminability (resolution) of differences in amplitude and frequency based on FSL are higher than those based on SC; (3) the CVs of FSL for low amplitude stimuli were smaller than those of SC; (4) the fraction of neurons for which BF=CF (within +/-500Hz) obtained from FSL was higher than that from SC at any amplitude of sound. Therefore, SC and FSL may vary, independent from each other and represent different parameters of an acoustic stimulus, but FSL with its precision and stability appears to be a better parameter than SC in evaluation of the response of a neuron to frequency and amplitude in mouse inferior colliculus.
Collapse
Affiliation(s)
- Xiaodong Tan
- Physiology Department, Basic Medical School, Southern Medical University, Guangzhou 510515, China
| | | | | | | |
Collapse
|