Vieyra DS, Rosen A, Goodell MA. Identification and characterization of side population cells in embryonic stem cell cultures.
Stem Cells Dev 2009;
18:1155-66. [PMID:
19113897 DOI:
10.1089/scd.2008.0391]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Marker and functional heterogeneity has been described for embryonic stem cells (ESCs). This property has been correlated with the presence of ESC subpopulations resembling pluripotent cell lineages of the embryo. The ability to efflux Hoechst (Ho) displayed by side population (SP) cells has proven valuable as a marker to identify multipotent stem cells from a variety of tissues. Here we report that cultures from different ESC lines consistently show an SP population that displays antigens of undifferentiated ESCs, distinct drug efflux properties, and an expression pattern of ABC transporters, inner cell mass (ICM), and epiblast genes, which distinguish it from the non-SP ESC fraction. This SP population contains pluripotent cells that differentiate into ectoderm, mesoderm, and endoderm in embryoid body and teratoma assays. Further, purified SP cells efficiently integrate into developing morulae and contribute to ICM. Under standard ESC culture conditions, SP and non-SP populations display ability to convert into each other; however, an equilibrium establishes between these fractions. Using protocols customized for SP ESCs, we report that cells with similar efflux properties can be identified in the ICM of peri-implanted blastocysts. Our results indicate that ESCs display heterogeneity for the SP marker, and the SP population of these cultures contains cells that phenotypically and functionally resemble efflux-active ICM cells of the peri-implanted embryo. Our observations suggest an involvement of the SP phenotype in ESC maintenance and early embryo development, and support the idea that ESCs are composed of distinct phenotypic and functional pluripotent subpopulations in dynamic equilibrium.
Collapse