1
|
Delma FZ, Al-Hatmi AMS, Brüggemann RJM, Melchers WJG, de Hoog S, Verweij PE, Buil JB. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7110909. [PMID: 34829198 PMCID: PMC8623157 DOI: 10.3390/jof7110909] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/30/2022] Open
Abstract
Effective management and treatment of fungal diseases is hampered by poor diagnosis, limited options for antifungal therapy, and the emergence of antifungal drug resistance. An understanding of molecular mechanisms contributing to resistance is essential to optimize the efficacy of currently available antifungals. In this perspective, one of the oldest antifungals, 5-fluorocytosine (5-FC), has been the focus of recent studies applying advanced genomic and transcriptomic techniques to decipher the order of events at the molecular level that lead to resistance. These studies have highlighted the complexity of resistance and provided new insights that are reviewed in the present paper.
Collapse
Affiliation(s)
- Fatima Zohra Delma
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
| | - Abdullah M. S. Al-Hatmi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Roger J. M. Brüggemann
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Department of Pharmacy, Radboud University Medical Center, 6252 AG Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Sybren de Hoog
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Foundation Atlas of Clinical Fungi, 1214 GP Hilversum, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
| | - Jochem B. Buil
- Department of Medical Microbiology, Radboud University Medical Centre, 6252 AG Nijmegen, The Netherlands; (F.Z.D.); (W.J.G.M.); (P.E.V.)
- Centre of Expertise in Mycology Radboudumc/CWZ, Radboudumc Center for Infectious Diseases (RCI), 6252 AG Nijmegen, The Netherlands; (R.J.M.B.); (S.d.H.)
- Correspondence: ; Tel.: +31-24-361-4356
| |
Collapse
|
2
|
Jacob TR, Peres NTA, Persinoti GF, Silva LG, Mazucato M, Rossi A, Martinez-Rossi NM. rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum. Med Mycol 2011; 50:368-77. [PMID: 21958376 DOI: 10.3109/13693786.2011.616230] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.
Collapse
Affiliation(s)
- Tiago R Jacob
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|