1
|
Hosseiniyan Khatibi SM, Ardalan M, Abediazar S, Zununi Vahed S. The impact of steroids on the injured podocytes in nephrotic syndrome. J Steroid Biochem Mol Biol 2020; 196:105490. [PMID: 31586640 DOI: 10.1016/j.jsbmb.2019.105490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/03/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Nephrotic syndrome (NS), a common chronic kidney disease, embraces a variety of kidney disorders. Though Glucocorticoids (GCs) are generally used in the treatment of NS, their mechanism of action is poorly understood. A plethora of evidence indicates that podocytes are considered as the main target cells for the therapeutic strategies to prevent NS. GCs regulate the transactivation and transrepression of genes in podocytes that affect their morphological and cytoskeletal features, motility, apoptosis and survival rate. Moreover, they prevent protein leakage through the glomerular barrier membrane by affecting the synthesis, trafficking and posttranslational modifications of slit diaphragms components, podocytes' intercellular junctions. The response to the treatment is variable among different ethnics and populations and resistance to the steroids is detected in almost 50% of adult patients. Not only do pharmacokinetics and pharmacogenetics of steroids play a role in GC resistance but also the genetic variations in one or more podocyte related genes are connected with the steroid resistance in cases with NS. The focus of this review is to explain the underlying cellular and molecular mechanisms of GCs in podocytes. Understanding the mechanisms by which the GCs and GCs receptors in podocytes regulate the gene expression network and crosstalk with other molecular pathways would guarantee an optimum therapeutic benefit of steroid treatment.
Collapse
Affiliation(s)
| | | | - Sima Abediazar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Huang F, Sheng XX, Zhang HJ. DUSP26 regulates podocyte oxidative stress and fibrosis in a mouse model with diabetic nephropathy through the mediation of ROS. Biochem Biophys Res Commun 2019; 515:410-416. [PMID: 31155289 DOI: 10.1016/j.bbrc.2019.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of renal failure worldwide. Unfortunately, the pathogenetic mechanism of DN is far from to be understood. Dual-specificity phosphatase 26 (DUSP26) is a member of the Dusp protein family, and is suggested to be involved in divers biological and pathological processes, such as cell growth, differentiation, inflammation and apoptosis. However, its role in the development of DN is still vague. In this study, we found that DUSP26 expression was increased in kidney of DN patients. Then, the wild type (DUSP26+/+) and gene knockout (DUSP26-/-) mice were used to further explore the effects of DUSP26 on DN development induced by streptozotocin (STZ). DUSP26 deficiency accelerated renal injury and dysfunction, as evidenced by the elevated glomerulosclerosis, reduced expression of Nephrin and promoted glomerular basement membrane thickness. In addition, STZ treatment resulted in reactive oxygen species (ROS) accumulation, H2O2 overproduction and superoxide dismutase (SOD) reduction in renal cortex or glomeruli of mice. The ROS production caused the activation of mitogen-activated protein kinase (MAPKs) signaling in kidney glomeruli of STZ-induced mice. These in vivo pathological processes were further confirmed in the differentiated podocytes stimulated by glucose (GLU). Intriguingly, we found that STZ-induced DN as mentioned above was further accelerated by DUSP26-/- in mice following STZ injection. Moreover, STZ-induced fibrosis in kidney glomeruli of DN mice was markedly prolonged in DUSP26-knockout mice through potentiating transforming growth factor-β1 (TGF-β1) expression. More importantly, reducing ROS generation could significantly abolish DUSP26 knockdown-exacerbated TGF-β1 expression and MAPKs activation, thereby protecting podocytes from GLU-induced podocyte injury. Thus, DUSP26-regulated DN development was largely dependent on ROS generation. Taken together, we concluded that DUSP26 might be a promising therapeutic target for developing effective treatments against DN progression.
Collapse
Affiliation(s)
- Feng Huang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Xu-Xiang Sheng
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Hong-Juan Zhang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China.
| |
Collapse
|
3
|
Samadi M, Shirpoor A, Afshari AT, Kheradmand F, Rasmi Y, Sadeghzadeh M. Chronic ethanol ingestion induces glomerular filtration barrier proteins genes expression alteration and increases matrix metalloproteinases activity in the kidney of rats. Interv Med Appl Sci 2018; 10:171-177. [PMID: 30713757 PMCID: PMC6343583 DOI: 10.1556/1646.10.2018.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Chronic alcohol ingestion-induced kidney structure and function alterations are very well known, but the precise underlying molecular mediators involved in ethanol-induced kidney abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on matrix metalloproteinase 2, 9 (MMP), glomerular filtration barrier proteins (nephrin and podocin), as well as vascular endothelial growth factor receptor 1, 2 (VEGFRs) isoforms gene expression in the kidney of rats. Methods Sixteen male Wistar rats with an initial body weight of 220 ± 10 g were divided into the following two groups: (1) control and (2) ethanol (4.5 g/kg BW). Results After 6 weeks of treatment, the results revealed a significant increase in isoforms VEGFR1 and VEGFR2 of VEGFR gene expression, significant increases of MMP2 and MMP9 activities, as well as significant decrease of nephrin and podocin gene expressions in the ethanol group, compared with that in the control group. Conclusion These findings indicate that ethanol-induced kidney abnormalities may be in part associated with alteration in expressions of VEGFRs, nephrin, and podocin and in increasing activities of MMP2 and MMP9 as key molecular mediators in the kidney function.
Collapse
Affiliation(s)
- Mahrokh Samadi
- Faculty of Medicine, Department of Physiology, Urmia University of Medical Sciences, Urmia, Iran.,Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Faculty of Medicine, Department of Physiology, Urmia University of Medical Sciences, Urmia, Iran.,Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Taghizadeh Afshari
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Kheradmand
- Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Sadeghzadeh
- Faculty of Medicine, Department of Physiology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Feng W, Zhang K, Liu Y, Chen J, Cai Q, He W, Zhang Y, Wang MH, Wang J, Huang H. Advanced oxidation protein products aggravate cardiac remodeling via cardiomyocyte apoptosis in chronic kidney disease. Am J Physiol Heart Circ Physiol 2018; 314:H475-H483. [PMID: 29101185 DOI: 10.1152/ajpheart.00628.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Yu Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Wanbing He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Yinyin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| |
Collapse
|
5
|
Ye M, Zheng J, Chen X, Chen X, Wu X, Lin X, Liu Y. Prednisone inhibits the focal adhesion kinase/receptor activator of NF-κB ligand/mitogen-activated protein kinase signaling pathway in rats with adriamycin-induced nephropathy. Mol Med Rep 2015; 12:7471-8. [PMID: 26459042 DOI: 10.3892/mmr.2015.4370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/27/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the mechanisms underlying the effects of prednisone on adriamycin-induced nephritic rat kidney damage via the focal adhesion kinase (FAK)/receptor activator of nuclear factor-κB ligand (RANKL)/mitogen‑activated protein kinase (MAPK) signaling pathway. An adriamycin‑induced nephritic rat model was established to investigate these mechanisms. A total of 30 healthy male Sprague‑Dawley rats were randomly assigned to the normal, model or prednisone group. Samples of urine were collected over the course of 24 h at days 7, 14, and 28, and renal cortex tissue samples were harvested at days 14, and 28 following nephritic rat model establishment. The total urinary protein content was measured by biuret colorimetry. Pathological changes in the kidney tissue samples were observed using an electron microscope. The mRNA expressions levels of FAK, RANKL, p38, extracellular signal‑regulated kinase (ERK), c‑Jun N‑terminal kinase (JNK), and nephrin were then quantified by reverse transcription‑quantitative polymerase chain reaction. In addition, the protein expressions levels of FAK, RANKL, p38, ERK, JNK, phosphorylated (p)‑FAK, p‑ERK, and p‑JNK were quantified by western blotting. As compared with the normal group, the protein expression levels of FAK, RANKL, p-FAK, p38 and p-ERK in the model group were increased. In the prednisone group, the protein expression levels of p-ERK decreased, as compared with the normal group. In the prednisone group, the urinary protein levels, the protein expression levels of FAK, RANKL, p38, p-FAK, p-p38 and the mRNA expression levels of FAK, p38, RANKL, ERK, JNK decreased, as compared with the model group. In the prednisone group, the mRNA and protein expression levels of nephrin and the serum expression levels of RANKL increased, the serum expression levels of osteoprotegerin (OPG) were decreased, as compared with the model group. No significant changes in the protein expression levels of JNK were observed among the groups. These results suggested that prednisone is able to protect podocytes from apoptosis, and reduce urinary protein levels by inhibiting the FAK/RANKL/MAPK signaling pathway in kidney tissue samples. Serum prednisone may induce osteoporosis via the OPG/RANK/RANKL signaling pathway.
Collapse
Affiliation(s)
- Minyuan Ye
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Zheng
- Department of Nephropathy, The People's Hospital of Fujian Province, Fuzhou, Fujian 350004, P.R. China
| | - Xiaoying Chen
- Department of Nephropathy, The People's Hospital of Fujian Province, Fuzhou, Fujian 350004, P.R. China
| | - Xuelan Chen
- Department of Nephropathy, The People's Hospital of Fujian Province, Fuzhou, Fujian 350004, P.R. China
| | - Xinhong Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiuqin Lin
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yafang Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
6
|
Wan Q, Xu Y, Dong E. Diabetic nephropathy research in China: Data analysis and review from the National Natural Science Foundation of China. J Diabetes 2015; 7:307-14. [PMID: 25565189 DOI: 10.1111/1753-0407.12265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/09/2023] Open
Abstract
As the largest funding agency of natural science of China, the National Natural Science Foundation of China (NSFC) has made great efforts in promoting the development of diabetic nephropathy (DN) research in recent years. The aim of the current study is to summarize the diabetic nephropathy research in China by analyzing NSFC-funded projects. Data on all projects in the DN field funded by NSFC from 1986 to 2013 were collected. The funding tendency, funding areas, and hotspots in the DN field, and major research institutions, were analyzed. As one output of this support, outstanding research groups in China, and their representative studies, are also highlighted. From 1986 to 2013, the NSFC has funded a total of 248 projects in the DN field, with a total funding amount of 91.5 million RMB (US$14.9 million). A rapid increase could be seen in the past 5 years, with an average annual 30% increase in projects numbers and a 52% increase in funding amount. All fields in DN research have been covered by the NSFC, including etiology, pathophysiology, diagnostics, and therapeutics. Along with increased funding of the DN research, there has been a growth in the papers published in Science Citation Index journals by Chinese scholars. In the past decade, the funding scale and funding budget have increased dramatically. Benefiting from this, DN research in China has also made considerable progression.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China; Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | |
Collapse
|
7
|
Sesquiterpene lactones inhibit advanced oxidation protein product-induced MCP-1 expression in podocytes via an IKK/NF-κB-dependent mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:934058. [PMID: 25664142 PMCID: PMC4309307 DOI: 10.1155/2015/934058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023]
Abstract
Inflammation is a relevant factor in the pathogenesis of diabetes nephropathy (DN). Sesquiterpene lactones (SLs), originally isolated from Tanacetum parthenium, have been reported to exhibit anti-inflammatory effects but few studies have examined their effects on DN. To determine whether advanced oxidation protein products (AOPPs) can induce the expression of chemokine monocyte chemoattractant protein- (MCP-) 1 in cultured mouse podocytes and to explore the mechanisms of the potential renoprotection of SLs, we treated podocytes with AOPPs and SLs (parthenolide and its derivatives micheliolide, compound 1, and compound 2). MCP-1 mRNA and protein expression were tested using quantitative real-time PCR and ELISA, respectively, and the protein levels of IKKβ, phospho-IKKβ, IκBα, NF-κB p65, phospho-NF-κB p65, and tubulin were analyzed by Western blotting. AOPPs activated the expression of MCP-1 mRNA and protein in a dose- and time-dependent manner, activated IKKβ and NF-κB p65, and promoted IκBα degradation. The IKK/NF-κB inhibitor parthenolide decreased AOPP-induced MCP-1 expression. Pretreatment with SLs inhibited MCP-1 mRNA and protein expression and suppressed IKKβ and NF-κB p65 phosphorylation and IκBα degradation. Taken together, these findings provide a novel explanation for the anti-inflammatory effects of SLs that will ultimately benefit DN and potentially other inflammatory and immune renal diseases.
Collapse
|
8
|
Müller-Deile J, Schiffer M. The podocyte power-plant disaster and its contribution to glomerulopathy. Front Endocrinol (Lausanne) 2014; 5:209. [PMID: 25566185 PMCID: PMC4266017 DOI: 10.3389/fendo.2014.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022] Open
Abstract
Proper podocyte function within the glomerulus demands a high and continuous energy supply that is mainly derived from the respiratory chain of the inner mitochondrial membrane. Dysregulations in the metabolic homeostasis of podocytes may result in podocyte damage and glomerular disease. This article highlights the current knowledge about podocyte energy supply by the respiratory chain. We review the regulation of mitochondrial oxidative metabolism with regard to podocytopathy and discuss the latest understanding of different mitochondrial dysfunctions of the podocyte in diabetic nephropathy and focal segmental glomerulosclerosis (FSGS). We discuss genetic forms of mitochondriopathy of the podocyte and end with recent knowledge about crosstalk between NADH and NADPH and potential therapeutic options for podocyte mitochondriopathy. We aim to raise awareness for the complex and interesting mechanisms of podocyte damage by impaired energy supply that, despite of novel findings in recent years, is poorly understood so far.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Division of Nephrology and Hypertension, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Division of Nephrology and Hypertension, Department of Medicine, Hannover Medical School, Hannover, Germany
- *Correspondence: Mario Schiffer, Division of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany e-mail:
| |
Collapse
|