1
|
Cena JAD, Belmok A, Kyaw CM, Dame-Teixeira N. The Archaea domain: Exploring historical and contemporary perspectives with in silico primer coverage analysis for future research in Dentistry. Arch Oral Biol 2024; 161:105936. [PMID: 38422909 DOI: 10.1016/j.archoralbio.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The complete picture of how the human microbiome interacts with its host is still largely unknown, particularly concerning microorganisms beyond bacteria. Although existing in very low abundance and not directly linked to causing diseases, archaea have been detected in various sites of the human body, including the gastrointestinal tract, oral cavity, skin, eyes, respiratory and urinary systems. But what exactly are these microorganisms? In the early 1990 s, archaea were classified as a distinct domain of life, sharing a more recent common ancestor with eukaryotes than with bacteria. While archaea's presence and potential significance in Dentistry remain under-recognized, there are concerns that they may contribute to oral dysbiosis. However, detecting archaea in oral samples presents challenges, including difficulties in culturing, the selection of DNA extraction methods, primer design, bioinformatic analysis, and databases. DESIGN This is a comprehensive review on the oral archaeome, presenting an in-depth in silico analysis of various primers commonly used for detecting archaea in human body sites. RESULTS Among several primer pairs used for detecting archaea in human samples across the literature, only one specifically designed for detecting methanogenic archaea in stool samples, exhibited exceptional coverage levels for the domain and various archaea phyla. CONCLUSIONS Our in silico analysis underscores the need for designing new primers targeting not only methanogenic archaea but also nanoarchaeal and thaumarchaeota groups to gain a comprehensive understanding of the archaeal oral community. By doing so, researchers can pave the way for further advancements in the field of oral archaeome research.
Collapse
Affiliation(s)
| | - Aline Belmok
- Institute of Biology, University of Brasilia, Brazil
| | | | - Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brazil; Division of Oral Biology, School of Dentistry, University of Leeds, UK.
| |
Collapse
|
2
|
Oki K, Nagata M, Yamagami T, Numata T, Ishino S, Oyama T, Ishino Y. Family D DNA polymerase interacts with GINS to promote CMG-helicase in the archaeal replisome. Nucleic Acids Res 2021; 50:3601-3615. [PMID: 34568951 PMCID: PMC9023282 DOI: 10.1093/nar/gkab799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022] Open
Abstract
Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.
Collapse
Affiliation(s)
- Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Caldwell CC, Spies M. Dynamic elements of replication protein A at the crossroads of DNA replication, recombination, and repair. Crit Rev Biochem Mol Biol 2020; 55:482-507. [PMID: 32856505 PMCID: PMC7821911 DOI: 10.1080/10409238.2020.1813070] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023]
Abstract
The heterotrimeric eukaryotic Replication protein A (RPA) is a master regulator of numerous DNA metabolic processes. For a long time, it has been viewed as an inert protector of ssDNA and a platform for assembly of various genome maintenance and signaling machines. Later, the modular organization of the RPA DNA binding domains suggested a possibility for dynamic interaction with ssDNA. This modular organization has inspired several models for the RPA-ssDNA interaction that aimed to explain how RPA, the high-affinity ssDNA binding protein, is replaced by the downstream players in DNA replication, recombination, and repair that bind ssDNA with much lower affinity. Recent studies, and in particular single-molecule observations of RPA-ssDNA interactions, led to the development of a new model for the ssDNA handoff from RPA to a specific downstream factor where not only stability and structural rearrangements but also RPA conformational dynamics guide the ssDNA handoff. Here we will review the current knowledge of the RPA structure, its dynamic interaction with ssDNA, and how RPA conformational dynamics may be influenced by posttranslational modification and proteins that interact with RPA, as well as how RPA dynamics may be harnessed in cellular decision making.
Collapse
Affiliation(s)
- Colleen C. Caldwell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
4
|
Ishino Y. Studies on DNA-related enzymes to elucidate molecular mechanisms underlying genetic information processing and their application in genetic engineering. Biosci Biotechnol Biochem 2020; 84:1749-1766. [PMID: 32567488 DOI: 10.1080/09168451.2020.1778441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recombinant DNA technology, in which artificially "cut and pasted" DNA in vitro is introduced into living cells, contributed extensively to the rapid development of molecular biology over the past 5 decades since the latter half of the 20th century. Although the original technology required special experiences and skills, the development of polymerase chain reaction (PCR) has greatly eased in vitro genetic manipulation for various experimental methods. The current development of a simple genome-editing technique using CRISPR-Cas9 gave great impetus to molecular biology. Genome editing is a major technique for elucidating the functions of many unknown genes. Genetic manipulation technologies rely on enzymes that act on DNA. It involves artificially synthesizing, cleaving, and ligating DNA strands by making good use of DNA-related enzymes present in organisms to maintain their life activities. In this review, I focus on key enzymes involved in the development of genetic manipulation technologies.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
5
|
Lu S, Zhang X, Chen K, Chen Z, Li Y, Qi Z, Shen Y, Li Z. The small subunit of DNA polymerase D (DP1) associates with GINS-GAN complex of the thermophilic archaea in Thermococcus sp. 4557. Microbiologyopen 2019; 8:e00848. [PMID: 31069963 PMCID: PMC6741145 DOI: 10.1002/mbo3.848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
The eukaryotic GINS, Cdc45, and minichromosome maintenance proteins form an essential complex that moves with the DNA replication fork. The GINS protein complex has also been reported to associate with DNA polymerase. In archaea, the third domain of life, DNA polymerase D (PolD) is essential for DNA replication, and the genes encoding PolDs exist only in the genomes of archaea. The archaeal GAN (GINS‐associated nuclease) is believed to be a homolog of the eukaryotic Cdc45. In this study, we found that the Thermococcus sp. 4557 DP1 (small subunit of PolD) interacted with GINS15 in vitro, and the 3′–5′ exonuclease activity of DP1 was inhibited by GINS15. We also demonstrated that the GAN, GINS15, and DP1 proteins interact to form a complex adapting a GAN–GINS15–DP1 order. The results of this study imply that the complex constitutes a core of the DNA replisome in archaea.
Collapse
Affiliation(s)
- Shuhong Lu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.,Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Xuesong Zhang
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Kaiying Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Zimeng Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Yixiang Li
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Zhuo Li
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| |
Collapse
|
6
|
Nagata M, Ishino S, Yamagami T, Ishino Y. Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis. Biosci Biotechnol Biochem 2019; 83:695-704. [DOI: 10.1080/09168451.2018.1559722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Replication protein A (RPA) is an essential component of DNA metabolic processes. RPA binds to single-stranded DNA (ssDNA) and interacts with multiple DNA-binding proteins. In this study, we showed that two DNA polymerases, PolB and PolD, from the hyperthermophilic archaeon Thermococcus kodakarensis interact directly with RPA in vitro. RPA was expected to play a role in resolving the secondary structure, which may stop the DNA synthesis reaction, in the template ssDNA. Our in vitro DNA synthesis assay showed that the pausing was resolved by RPA for both PolB and PolD. These results supported the fact that RPA interacts with DNA polymerases as a member of the replisome and is involved in the normal progression of DNA replication forks.
Collapse
Affiliation(s)
- Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Takashima N, Ishino S, Oki K, Takafuji M, Yamagami T, Matsuo R, Mayanagi K, Ishino Y. Elucidating functions of DP1 and DP2 subunits from the Thermococcus kodakarensis family D DNA polymerase. Extremophiles 2018; 23:161-172. [PMID: 30506100 DOI: 10.1007/s00792-018-1070-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022]
Abstract
DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of archaea, except for those archaea in the Crenarchaeota phylum. PolD is composed of two proteins: DP1 and DP2. To date, the 3D structure of the PolD heteromeric complex is yet to be determined. In this study, we established a method that prepared highly purified PolD from Thermococcus kodakarensis, and purified DP1 and DP2 proteins formed a stable complex in solution. An intrinsically disordered region was identified in the N-terminal region of DP1, but the static light scattering analysis provided a reasonable molecular weight of DP1. In addition, PolD forms as a complex of DP1 and DP2 in a 1:1 ratio. Electron microscope single particle analysis supported this composition of PolD. Both proteins play an important role in DNA synthesis activity and in 3'-5' degradation activity. DP1 has extremely low affinity for DNA, while DP2 is mainly responsible for DNA binding. Our work will provide insight and the means to further understand PolD structure and the molecular mechanism of this archaea-specific DNA polymerase.
Collapse
Affiliation(s)
- Natsuki Takashima
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Keisuke Oki
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mika Takafuji
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ryotaro Matsuo
- Division of Malvern Panalytical, Spectris Co., Ltd, Tokyo, 105-0013, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
8
|
Possible function of the second RecJ-like protein in stalled replication fork repair by interacting with Hef. Sci Rep 2017; 7:16949. [PMID: 29209094 PMCID: PMC5717133 DOI: 10.1038/s41598-017-17306-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023] Open
Abstract
RecJ was originally identified in Escherichia coli and plays an important role in the DNA repair and recombination pathways. Thermococcus kodakarensis, a hyperthermophilic archaeon, has two RecJ-like nucleases. These proteins are designated as GAN (GINS-associated nuclease) and HAN (Hef-associated nuclease), based on the protein they interact with. GAN is probably a counterpart of Cdc45 in the eukaryotic CMG replicative helicase complex. HAN is considered mainly to function with Hef for restoration of the stalled replication fork. In this study, we characterized HAN to clarify its functions in Thermococcus cells. HAN showed single-strand specific 3′ to 5′ exonuclease activity, which was stimulated in the presence of Hef. A gene disruption analysis revealed that HAN was non-essential for viability, but the ΔganΔhan double mutant did not grow under optimal conditions at 85 °C. This deficiency was not fully recovered by introducing the mutant han gene, encoding the nuclease-deficient HAN protein, back into the genome. These results suggest that the unstable replicative helicase complex without GAN performs ineffective fork progression, and thus the stalled fork repair system including HAN becomes more important. The nuclease activity of HAN is required for the function of this protein in T. kodakarensis.
Collapse
|
9
|
Nagata M, Ishino S, Yamagami T, Ogino H, Simons JR, Kanai T, Atomi H, Ishino Y. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis. Nucleic Acids Res 2017; 45:10693-10705. [PMID: 28977567 PMCID: PMC5737688 DOI: 10.1093/nar/gkx740] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/12/2017] [Indexed: 01/18/2023] Open
Abstract
The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells.
Collapse
Affiliation(s)
- Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Hiromi Ogino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Jan-Robert Simons
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
10
|
The GAN Exonuclease or the Flap Endonuclease Fen1 and RNase HII Are Necessary for Viability of Thermococcus kodakarensis. J Bacteriol 2017; 199:JB.00141-17. [PMID: 28416706 DOI: 10.1128/jb.00141-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 11/20/2022] Open
Abstract
Many aspects of and factors required for DNA replication are conserved across all three domains of life, but there are some significant differences surrounding lagging-strand synthesis. In Archaea, a 5'-to-3' exonuclease, related to both bacterial RecJ and eukaryotic Cdc45, that associates with the replisome specifically through interactions with GINS was identified and designated GAN (for GINS-associated nuclease). Despite the presence of a well-characterized flap endonuclease (Fen1), it was hypothesized that GAN might participate in primer removal during Okazaki fragment maturation, and as a Cdc45 homologue, GAN might also be a structural component of an archaeal CMG (Cdc45, MCM, and GINS) replication complex. We demonstrate here that, individually, either Fen1 or GAN can be deleted, with no discernible effects on viability and growth. However, deletion of both Fen1 and GAN was not possible, consistent with both enzymes catalyzing the same step in primer removal from Okazaki fragments in vivo RNase HII has also been proposed to participate in primer processing during Okazaki fragment maturation. Strains with both Fen1 and RNase HII deleted grew well. GAN activity is therefore sufficient for viability in the absence of both RNase HII and Fen1, but it was not possible to construct a strain with both RNase HII and GAN deleted. Fen1 alone is therefore insufficient for viability in the absence of both RNase HII and GAN. The ability to delete GAN demonstrates that GAN is not required for the activation or stability of the archaeal MCM replicative helicase.IMPORTANCE The mechanisms used to remove primer sequences from Okazaki fragments during lagging-strand DNA replication differ in the biological domains. Bacteria use the exonuclease activity of DNA polymerase I, whereas eukaryotes and archaea encode a flap endonuclease (Fen1) that cleaves displaced primer sequences. RNase HII and the GINS-associated exonuclease GAN have also been hypothesized to assist in primer removal in Archaea Here we demonstrate that in Thermococcus kodakarensis, either Fen1 or GAN activity is sufficient for viability. Furthermore, GAN can support growth in the absence of both Fen1 and RNase HII, but Fen1 and RNase HII are required for viability in the absence of GAN.
Collapse
|
11
|
Ogino H, Ishino S, Kohda D, Ishino Y. The RecJ2 protein in the thermophilic archaeon Thermoplasma acidophilum is a 3'-5' exonuclease that associates with a DNA replication complex. J Biol Chem 2017; 292:7921-7931. [PMID: 28302716 DOI: 10.1074/jbc.m116.767921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/15/2017] [Indexed: 11/06/2022] Open
Abstract
RecJ/cell division cycle 45 (Cdc45) proteins are widely conserved in the three domains of life, i.e. in bacteria, Eukarya, and Archaea. Bacterial RecJ is a 5'-3' exonuclease and functions in DNA repair pathways by using its 5'-3' exonuclease activity. Eukaryotic Cdc45 has no identified enzymatic activity but participates in the CMG complex, so named because it is composed of Cdc45, minichromosome maintenance protein complex (MCM) proteins 2-7, and GINS complex proteins (Sld5, Psf11-3). Eukaryotic Cdc45 and bacterial/archaeal RecJ share similar amino acid sequences and are considered functional counterparts. In Archaea, a RecJ homolog in Thermococcus kodakarensis was shown to associate with GINS and accelerate its nuclease activity and was, therefore, designated GAN (GINS-associated nuclease); however, to date, no archaeal RecJ·MCM·GINS complex has been isolated. The thermophilic archaeon Thermoplasma acidophilum has two RecJ-like proteins, designated TaRecJ1 and TaRecJ2. TaRecJ1 exhibited DNA-specific 5'-3' exonuclease activity, whereas TaRecJ2 had 3'-5' exonuclease activity and preferred RNA over DNA. TaRecJ2, but not TaRecJ1, formed a stable complex with TaGINS in a 2:1 molar ratio. Furthermore, the TaRecJ2·TaGINS complex stimulated activity of TaMCM (T. acidophilum MCM) helicase in vitro, and the TaRecJ2·TaMCM·TaGINS complex was also observed in vivo However, TaRecJ2 did not interact with TaMCM directly and was not required for the helicase activation in vitro These findings suggest that the function of archaeal RecJ in DNA replication evolved divergently from Cdc45 despite conservation of the CMG-like complex formation between Archaea and Eukarya.
Collapse
Affiliation(s)
- Hiromi Ogino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and
| | - Sonoko Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and
| | - Daisuke Kohda
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Yoshizumi Ishino
- From the Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan and .,the Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1510938. [PMID: 27721668 PMCID: PMC5045986 DOI: 10.1155/2016/1510938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil); Endonuclease V (EndoV, which recognises hypoxanthine); and Endonuclease Q (EndoQ), (which recognises both uracil and hypoxanthine). Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.
Collapse
|
13
|
Oyama T, Ishino S, Shirai T, Yamagami T, Nagata M, Ogino H, Kusunoki M, Ishino Y. Atomic structure of an archaeal GAN suggests its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. Nucleic Acids Res 2016; 44:9505-9517. [PMID: 27599844 PMCID: PMC5100581 DOI: 10.1093/nar/gkw789] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022] Open
Abstract
In eukaryotic DNA replication initiation, hexameric MCM (mini-chromosome maintenance) unwinds the template double-stranded DNA to form the replication fork. MCM is activated by two proteins, Cdc45 and GINS, which constitute the ‘CMG’ unwindosome complex together with the MCM core. The archaeal DNA replication system is quite similar to that of eukaryotes, but only limited knowledge about the DNA unwinding mechanism is available, from a structural point of view. Here, we describe the crystal structure of an archaeal GAN (GINS-associated nuclease) from Thermococcus kodakaraensis, the homolog of eukaryotic Cdc45, in both the free form and the complex with the C-terminal domain of the cognate Gins51 subunit (Gins51C). This first archaeal GAN structure exhibits a unique, ‘hybrid’ structure between the bacterial RecJ and the eukaryotic Cdc45. GAN possesses the conserved DHH and DHH1 domains responsible for the exonuclease activity, and an inserted CID (CMG interacting domain)-like domain structurally comparable to that in Cdc45, suggesting its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. A structural comparison of the GAN–Gins51C complex with the GINS tetramer suggests that GINS uses the mobile Gins51C as a hook to bind GAN for CMG formation.
Collapse
Affiliation(s)
- Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Hiromi Ogino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Masami Kusunoki
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|
14
|
Abellón-Ruiz J, Waldron KJ, Connolly BA. Archaeoglobus Fulgidus DNA Polymerase D: A Zinc-Binding Protein Inhibited by Hypoxanthine and Uracil. J Mol Biol 2016; 428:2805-13. [PMID: 27320386 PMCID: PMC4942837 DOI: 10.1016/j.jmb.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 02/03/2023]
Abstract
Archaeal family-D DNA polymerases (Pol-D) comprise a small (DP1) proofreading subunit and a large (DP2) polymerase subunit. Pol-D is one of the least studied polymerase families, and this publication investigates the enzyme from Archaeoglobus fulgidus (Afu Pol-D). The C-terminal region of DP2 contains two conserved cysteine clusters, and their roles are investigated using site-directed mutagenesis. The cluster nearest the C terminus is essential for polymerase activity, and the cysteines are shown to serve as ligands for a single, critical Zn(2+) ion. The cysteines farthest from the C terminal were not required for activity, and a role for these amino acids has yet to be defined. Additionally, it is shown that Afu Pol-D activity is slowed by the template strand hypoxanthine, extending previous results that demonstrated inhibition by uracil. Hypoxanthine was a weaker inhibitor than uracil. Investigations with isolated DP2, which has a measurable polymerase activity, localised the deaminated base binding site to this subunit. Uracil and hypoxanthine slowed Afu Pol-D "in trans", that is, a copied DNA strand could be inhibited by a deaminated base in the alternate strand of a replication fork. The error rate of Afu Pol-D, measured in vitro, was 0.24×10(-5), typical for a polymerase that has been proposed to carry out genome replication in the Archaea. Deleting the 3'-5' proofreading exonuclease activity reduced fidelity twofold. The results presented in this publication considerably increase our knowledge of Pol-D.
Collapse
Affiliation(s)
- Javier Abellón-Ruiz
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Bernard A Connolly
- Institute for Cell and Molecular Biology, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
15
|
Activation of a dormant replication origin is essential for Haloferax mediterranei lacking the primary origins. Nat Commun 2015; 6:8321. [PMID: 26374389 PMCID: PMC4595724 DOI: 10.1038/ncomms9321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/11/2015] [Indexed: 01/21/2023] Open
Abstract
The use of multiple origins for chromosome replication has been demonstrated in archaea. Similar to the dormant origins in eukaryotes, some potential origins in archaea appear to be inactive during genome replication. We have comprehensively explored the origin utilization in Haloferax mediterranei. Here we report three active chromosomal origins by genome-wide replication profiling, and demonstrate that when these three origins are deleted, a dormant origin becomes activated. Notably, this dormant origin cannot be further deleted when the other origins are already absent and vice versa. Interestingly, a potential origin that appears to stay dormant in its native host H. volcanii lacking the main active origins becomes activated and competent for replication of the entire chromosome when integrated into the chromosome of origin-deleted H. mediterranei. These results indicate that origin-dependent replication is strictly required for H. mediterranei and that dormant replication origins in archaea can be activated if needed.
Collapse
|
16
|
Abstract
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
Collapse
Affiliation(s)
- Lori M Kelman
- Program in Biotechnology, Montgomery College, Germantown, Maryland 20876;
| | | |
Collapse
|
17
|
Ogino H, Ishino S, Oyama T, Kohda D, Ishino Y. Disordered interdomain region of Gins is important for functional tetramer formation to stimulate MCM helicase in Thermoplasma acidophilum. Biosci Biotechnol Biochem 2014; 79:432-8. [PMID: 25419910 DOI: 10.1080/09168451.2014.982503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The eukaryotic MCM is activated by forming the CMG complex with Cdc45 and GINS to work as a replicative helicase. The eukaryotic GINS consists of four different proteins to form tetrameric complex. In contrast, the TaGins51 protein from the thermophilic archaeon, Thermoplasma acidophilum forms a homotetramer (TaGINS), and interacts with the cognate MCM (TaMCM) to stimulate the DNA-binding, ATPase, and helicase activities of TaMCM. All Gins proteins from Archaea and Eukarya contain α-helical A- and β-stranded B-domains. Here, we found that TaGins51 forms the tetramer without the B-domain. However, the A-domain without the linker region between the A- and B-domains could not form a stable tetramer, and furthermore, the A-domain by itself could not stimulate the TaMCM activity. These results suggest that the formation of the Gins51 tetramer is necessary for MCM activation, and the disordered linker region between the two domains is critical for the functional complex formation.
Collapse
Affiliation(s)
- Hiromi Ogino
- a Department of Bioscience & Biotechnology , Graduate School of Bioresource & Bioenvironmental Sciences, Kyushu University , Fukuoka , Japan
| | | | | | | | | |
Collapse
|
18
|
Activation of the MCM helicase from the thermophilic archaeon, Thermoplasma acidophilum by interactions with GINS and Cdc6-2. Extremophiles 2014; 18:915-24. [PMID: 25107272 DOI: 10.1007/s00792-014-0673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/06/2014] [Indexed: 01/25/2023]
Abstract
In DNA replication studies, the mechanism for regulation of the various steps from initiation to elongation is a crucial subject to understand cell cycle control. The eukaryotic minichromosome maintenance (MCM) protein complex is recruited to the replication origin by Cdc6 and Cdt1 to form the pre-replication complex, and participates in forming the CMG complex formation with Cdc45 and GINS to work as the active helicase. Intriguingly, Thermoplasma acidophilum, as well as many other archaea, has only one Gins protein homolog, contrary to the heterotetramer of the eukaryotic GINS made of four different proteins. The Gins51 protein reportedly forms a homotetramer (TaGINS) and physically interacts with TaMCM. In addition, TaCdc6-2, one of the two Cdc6/Orc1 homologs in T. acidophilum reportedly stimulates the ATPase and helicase activities of TaMCM in vitro. Here, we found a reaction condition, in which TaGINS stimulated the ATPase and helicase activities of TaMCM in a concentration dependent manner. Furthermore, the stimulation of the TaMCM helicase activity by TaGINS was enhanced by the addition of TaCdc6-2. A gel retardation assay revealed that TaMCM, TaGINS, and TaCdc6-2 form a complex on ssDNA. However, glutaraldehyde-crosslinking was necessary to detect the shifted band, indicating that the ternary complex of TaMCM-TaGINS-TaCdc6-2 is not stable in vitro. Immunoprecipitation experiment supported a weak interaction of these three proteins in vivo. Activation of the replicative helicase by a mechanism including a Cdc6-like protein suggests the divergent evolution after the division into Archaea and Eukarya.
Collapse
|
19
|
Jozwiakowski SK, Keith BJ, Gilroy L, Doherty AJ, Connolly BA. An archaeal family-B DNA polymerase variant able to replicate past DNA damage: occurrence of replicative and translesion synthesis polymerases within the B family. Nucleic Acids Res 2014; 42:9949-63. [PMID: 25063297 PMCID: PMC4150786 DOI: 10.1093/nar/gku683] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A mutant of the high fidelity family-B DNA polymerase from the archaeon Thermococcus gorgonarius (Tgo-Pol), able to replicate past DNA lesions, is described. Gain of function requires replacement of the three amino acid loop region in the fingers domain of Tgo-Pol with a longer version, found naturally in eukaryotic Pol ζ (a family-B translesion synthesis polymerase). Inactivation of the 3′–5′ proof-reading exonuclease activity is also necessary. The resulting Tgo-Pol Z1 variant is proficient at initiating replication from base mismatches and can read through damaged bases, such as abasic sites and thymine photo-dimers. Tgo-Pol Z1 is also proficient at extending from primers that terminate opposite aberrant bases. The fidelity of Tgo-Pol Z1 is reduced, with a marked tendency to make changes at G:C base pairs. Together, these results suggest that the loop region of the fingers domain may play a critical role in determining whether a family-B enzyme falls into the accurate genome-replicating category or is an error-prone translesion synthesis polymerase. Tgo-Pol Z1 may also be useful for amplification of damaged DNA.
Collapse
Affiliation(s)
- Stanislaw K Jozwiakowski
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Louise Gilroy
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
20
|
Base excision repair in Archaea: back to the future in DNA repair. DNA Repair (Amst) 2014; 21:148-57. [PMID: 25012975 DOI: 10.1016/j.dnarep.2014.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 05/24/2014] [Indexed: 11/22/2022]
Abstract
Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account.
Collapse
|
21
|
Elshawadfy AM, Keith BJ, Ee Ooi H, Kinsman T, Heslop P, Connolly BA. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction. Front Microbiol 2014; 5:224. [PMID: 24904539 PMCID: PMC4034419 DOI: 10.3389/fmicb.2014.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/28/2014] [Indexed: 11/20/2022] Open
Abstract
The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the “forked-point” (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the “forked-point” and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms.
Collapse
Affiliation(s)
- Ashraf M Elshawadfy
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - H'Ng Ee Ooi
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Thomas Kinsman
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Pauline Heslop
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Greenough L, Menin JF, Desai NS, Kelman Z, Gardner AF. Characterization of family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles 2014; 18:653-64. [PMID: 24794034 PMCID: PMC4065339 DOI: 10.1007/s00792-014-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Collapse
Affiliation(s)
- Lucia Greenough
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | | |
Collapse
|
23
|
Diversity of the DNA replication system in the Archaea domain. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:675946. [PMID: 24790526 PMCID: PMC3984812 DOI: 10.1155/2014/675946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/16/2014] [Indexed: 12/11/2022]
Abstract
The precise and timely duplication of the genome is essential for cellular life. It is achieved by DNA replication, a complex process that is conserved among the three domains of life. Even though the cellular structure of archaea closely resembles that of bacteria, the information processing machinery of archaea is evolutionarily more closely related to the eukaryotic system, especially for the proteins involved in the DNA replication process. While the general DNA replication mechanism is conserved among the different domains of life, modifications in functionality and in some of the specialized replication proteins are observed. Indeed, Archaea possess specific features unique to this domain. Moreover, even though the general pattern of the replicative system is the same in all archaea, a great deal of variation exists between specific groups.
Collapse
|
24
|
Abstract
The development of rigorous molecular taxonomy pioneered by Carl Woese has freed evolution science to explore numerous cellular activities that lead to genome change in evolution. These activities include symbiogenesis, inter- and intracellular horizontal DNA transfer, incorporation of DNA from infectious agents, and natural genetic engineering, especially the activity of mobile elements. This article reviews documented examples of all these processes and proposes experiments to extend our understanding of cell-mediated genome change.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology; University of Chicago; Chicago, IL USA
| |
Collapse
|
25
|
Affiliation(s)
- Joel A. Farkas
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jonathan W. Picking
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Thomas J. Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523;
| |
Collapse
|
26
|
Characterization of the replication initiator Orc1/Cdc6 from the Archaeon Picrophilus torridus. J Bacteriol 2013; 196:276-86. [PMID: 24187082 DOI: 10.1128/jb.01020-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at or very near origins in G1 phase, which licenses origin firing in S phase. The archaeal DNA replication machinery broadly resembles the eukaryal apparatus, though simpler in form. The eukaryotic replication initiator origin recognition complex (ORC), which serially recruits Cdc6 and other pre-RC proteins, comprises six components, Orc1-6. In archaea, a single gene encodes a protein similar to both the eukaryotic Cdc6 and the Orc1 subunit of the eukaryotic ORC, with most archaea possessing one to three Orc1/Cdc6 orthologs. Genome sequence analysis of the extreme acidophile Picrophilus torridus revealed a single Orc1/Cdc6 (PtOrc1/Cdc6). Biochemical analyses show MBP-tagged PtOrc1/Cdc6 to preferentially bind ORB (origin recognition box) sequences. The protein hydrolyzes ATP in a DNA-independent manner, though DNA inhibits MBP-PtOrc1/Cdc6-mediated ATP hydrolysis. PtOrc1/Cdc6 exists in stable complex with PCNA in Picrophilus extracts, and MBP-PtOrc1/Cdc6 interacts directly with PCNA through a PIP box near its C terminus. Furthermore, PCNA stimulates MBP-PtOrc1/Cdc6-mediated ATP hydrolysis in a DNA-dependent manner. This is the first study reporting a direct interaction between Orc1/Cdc6 and PCNA in archaea. The bacterial initiator DnaA is converted from an active to an inactive form by ATP hydrolysis, a process greatly facilitated by the bacterial ortholog of PCNA, the β subunit of Pol III. The stimulation of PtOrc1/Cdc6-mediated ATP hydrolysis by PCNA and the conservation of PCNA-interacting protein motifs in several archaeal PCNAs suggest the possibility of a similar mechanism of regulation existing in archaea. This mechanism may involve other yet to be identified archaeal proteins.
Collapse
|
27
|
Pelve EA, Martens-Habbena W, Stahl DA, Bernander R. Mapping of active replication origins in vivo in thaum- and euryarchaeal replicons. Mol Microbiol 2013; 90:538-50. [PMID: 23991938 DOI: 10.1111/mmi.12382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 02/03/2023]
Abstract
We report mapping of active replication origins in thaum- and euryarchaeal replicons using high-throughput sequencing-based marker frequency analysis. The chromosome of the thaumarchaeon Nitrosopumilus maritimus is shown to contain a single origin of replication, whereas the main chromosome in the halophilic euryarchaea Haloferax mediterranei and Haloferax volcanii each contains two origins. All replication origins specified bidirectional replication, and the two origins in the halophiles were initiated in synchrony. The pHM500 plasmid of H. mediterranei is shown to contain a single origin, and the copy numbers of five plasmid replicons in the two halophiles were inferred to be close to that of the main chromosome. Origin recognition boxes (ORBs) that provide binding sites for Orc1/Cdc6 replication initiator proteins are identified at all chromosomal origins, as well as in a range of additional thaumarchaeal species. An annotation update is provided for all three species.
Collapse
Affiliation(s)
- Erik A Pelve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Abstract
Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | |
Collapse
|
29
|
Pan M, Santangelo TJ, Čuboňová Ľ, Li Z, Metangmo H, Ladner J, Hurwitz J, Reeve JN, Kelman Z. Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability. Extremophiles 2013; 17:453-61. [PMID: 23525944 PMCID: PMC3743106 DOI: 10.1007/s00792-013-0526-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) monomers assemble to form a ring-shaped clamp complex that encircles duplex DNA. PCNA binding to other proteins tethers them to the DNA providing contacts and interactions for many other enzymes essential for DNA metabolic processes. Most eukarya and euryarchaea have only one PCNA homolog but Thermococcus kodakarensis uniquely has two, designated PCNA1 and PCNA2, encoded by TK0535 and TK0582, respectively. Here, we establish that both PCNA1 and PCNA2 form homotrimers that stimulate DNA synthesis by archaeal DNA polymerases B and D and ATP hydrolysis by the replication factor C complex. In exponentially growing cells, PCNA1 is abundant and present at an ~100-fold higher concentration than PCNA2 monomers. Deletion of TK0582 (PCNA2) had no detectable effects on viability or growth whereas repeated attempts to construct a T. kodakarensis strain with TK0535 (PCNA1) deleted were unsuccessful. The implications of these observations for PCNA1 function and the origin of the two PCNA-encoding genes in T. kodakarensis are discussed.
Collapse
Affiliation(s)
- Miao Pan
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | - Ľbomíra Čuboňová
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Zhuo Li
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Harlette Metangmo
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Jane Ladner
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA. National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - John N. Reeve
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA. National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
30
|
Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 2013; 195:2322-8. [PMID: 23504010 DOI: 10.1128/jb.02037-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Three evolutionarily distinct families of replicative DNA polymerases, designated polymerase B (Pol B), Pol C, and Pol D, have been identified. Members of the Pol B family are present in all three domains of life, whereas Pol C exists only in Bacteria and Pol D exists only in Archaea. Pol B enzymes replicate eukaryotic chromosomal DNA, and as members of the Pol B family are present in all Archaea, it has been assumed that Pol B enzymes also replicate archaeal genomes. Here we report the construction of Thermococcus kodakarensis strains with mutations that delete or inactivate key functions of Pol B. T. kodakarensis strains lacking Pol B had no detectable loss in viability and no growth defects or changes in spontaneous mutation frequency but had increased sensitivity to UV irradiation. In contrast, we were unable to introduce mutations that inactivated either of the genes encoding the two subunits of Pol D. The results reported establish that Pol D is sufficient for viability and genome replication in T. kodakarensis and argue that Pol D rather than Pol B is likely the replicative DNA polymerase in this archaeon. The majority of Archaea contain Pol D, and, as discussed, if Pol D is the predominant replicative polymerase in Archaea, this profoundly impacts hypotheses for the origin(s), evolution, and distribution of the different DNA replication enzymes and systems now employed in the three domains of life.
Collapse
|
31
|
Tori K, Ishino S, Kiyonari S, Tahara S, Ishino Y. A novel single-strand specific 3'-5' exonuclease found in the hyperthermophilic archaeon, Pyrococcus furiosus. PLoS One 2013; 8:e58497. [PMID: 23505520 PMCID: PMC3591345 DOI: 10.1371/journal.pone.0058497] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/05/2013] [Indexed: 11/21/2022] Open
Abstract
Nucleases play important roles in all DNA transactions, including replication, repair, and recombination. Many different nucleases from bacterial and eukaryotic organisms have been identified and functionally characterized. However, our knowledge about the nucleases from Archaea, the third domain of life, is still limited. We searched for 3'-5' exonuclease activity in the hyperthermophilic archaeon, Pyrococcus furiosus, and identified a protein with the target activity. The purified protein, encoded by PF2046, is composed of 229 amino acids with a molecular weight of 25,596, and displayed single-strand specific 3'-5' exonuclease activity. The protein, designated as PfuExo I, forms a stable trimeric complex in solution and excises the DNA at every two nucleotides from the 3' to 5' direction. The amino acid sequence of this protein is conserved only in Thermococci, one of the hyperthermophilic classes in the Euryarchaeota subdomain in Archaea. The newly discovered exonuclease lacks similarity to any other proteins with known function, including hitherto reported 3'-5' exonucleases. This novel nuclease may be involved in a DNA repair pathway conserved in the living organisms as a specific member for some hyperthermophilic archaea.
Collapse
Affiliation(s)
- Kazuo Tori
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinichi Kiyonari
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Saki Tahara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, and Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|