1
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Bawa G, Liu Z, Zhou Y, Fan S, Ma Q, Tissue DT, Sun X. Cotton proteomics: Dissecting the stress response mechanisms in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1035801. [PMID: 36466262 PMCID: PMC9714328 DOI: 10.3389/fpls.2022.1035801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The natural environment of plants comprises a complex set of biotic and abiotic stresses, and plant responses to these stresses are complex as well. Plant proteomics approaches have significantly revealed dynamic changes in plant proteome responses to stress and developmental processes. Thus, we reviewed the recent advances in cotton proteomics research under changing environmental conditions, considering the progress and challenging factors. Finally, we highlight how single-cell proteomics is revolutionizing plant research at the proteomics level. We envision that future cotton proteomics research at the single-cell level will provide a more complete understanding of cotton's response to stresses.
Collapse
Affiliation(s)
- George Bawa
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Abbas H, Wahid MA, Sattar A, Tung SA, Saleem MF, Irshad S, Alkahtani J, Elshikh MS, Cheema M, Li Y. Foliar application of mepiquat chloride and nitrogen improves yield and fiber quality traits of cotton (Gossypium hirsutum L.). PLoS One 2022; 17:e0268907. [PMID: 35696364 PMCID: PMC9191711 DOI: 10.1371/journal.pone.0268907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cotton (Gossypium hirsutum L.) is one of the most important cash crops primarily grown for fiber. It is a perennial crop with indeterminate growth pattern. Nitrogen (N) is extremely important for vegetative growth as balanced N-nutrition improves photosynthesis, resulting in better vegetative growth. Excessive N-supply results in more vegetative growth, which increases the incidence of insect pest and diseases’ infestation, pollute surface and ground water, delays maturity and produces low crop yield with poor quality. The use of plant growth regulators (PGRs) is an emerging option to control excessive vegetative growth. The PGRs help in improving plant architecture, boll retention, boll opening, yield and quality by altering growth and physiological processes such as photosynthesis, assimilate partitioning and nutrients dynamic inside the plant body. Mepiquat chloride (1,1-dimethylpiperidinum chloride) is globally used PGR for canopy development and control of excessive vegetative growth in cotton. This study investigated the effect of mepiquat chloride (MC) and N application on yield and yield components of transgenic cotton variety ‘BT-FSH-326’. Two N rates (0, 198 kg ha-1) and five MC rates (0, 30,60, 90 and 120 g ha-1) were included in the study. Results revealed that MC and N application improved boll weight, number of bolls per plant, and seed cotton and lint yields. The highest seed cotton and lint yields (3595 kg ha-1 and 1701 kg ha-1, respectively) were observed under foliar application of 198 kg ha-1 N and 120 g ha-1 MC. Fiber length, fiber strength, micronaire and uniformity were significantly improved with foliar application of MC and N. In conclusion, foliar application of MC and N could be helpful in improving yield and fiber quality of cotton.
Collapse
Affiliation(s)
- Hasnain Abbas
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Abdul Sattar
- College of Agriculture, Bahadur Sub-Campus, Bahauddin Zakariya University, Layyah, Pakistan
- * E-mail: (AS); (YL)
| | - Shahbaz Atta Tung
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Sohail Irshad
- Department of Agronomy, MNS University of Agriculture Multan, Multan, Pakistan
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland, Canada
| | - Yunzhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- * E-mail: (AS); (YL)
| |
Collapse
|
4
|
Leal AJF, Piati GL, Leite RC, Zanella MS, Osorio CRWS, Lima SF. Nitrogen and mepiquat chloride can affect fiber quality and cotton yield. ACTA ACUST UNITED AC 2020. [DOI: 10.1590/1807-1929/agriambi.v24n4p238-243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
ABSTRACT The use of mepiquat chloride (MC) in cotton (Gossypium hirsutum L.) cultivation has increased significantly in recent years. The use of MC, a growth regulator, results in higher precocity and lower height and consequently increases yield and reduces crop costs. The objective of this study was to evaluate the effects of nitrogen (N) and MC doses on fiber quality and cotton yield. This study was conducted during the 2012/13 and 2013/14 harvests in the experimental area of the Fundação de Apoio à Pesquisa Agropecuária de Chapadão, located in the municipality of Chapadão do Sul, MS, Brazil, at 18° 48’ 45.9” S, 52° 36’ 3” W, having an altitude of 820 m. The experimental design was a randomized blocks in a 5 × 4 factorial scheme comprised of five N doses (0, 40, 80, 120, 160 kg ha-1) and four MC doses (0, 50, 100, 150 mL ha-1) with four repetitions. Analyses of fiber quality included: length, uniformity, elongation, strength, micronaire index, reflectance, yellowing degrees and short fiber content. Regarding cotton yield, green color index (GCI), plant height at harvest time, and cotton seed yield were determined. The best results for fiber quality and productivity occurr with the application of 76.8 mL ha-1 of MC to the cotton crops when the N dose is greater than 80 kg ha-1. Increasing N doses causes an increase in cotton yield and micronaire index, but there is a decrease in fiber uniformity.
Collapse
|
5
|
Chen J, Liu L, Wang Z, Zhang Y, Sun H, Song S, Bai Z, Lu Z, Li C. Nitrogen Fertilization Increases Root Growth and Coordinates the Root-Shoot Relationship in Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:880. [PMID: 32655605 PMCID: PMC7324761 DOI: 10.3389/fpls.2020.00880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/29/2020] [Indexed: 05/07/2023]
Abstract
The root system plays an important role in the growth and development of cotton, and root growth is closely related to shoot growth, both of which are affected by N availability in the soil. However, it is unknown how N affects root growth and the root-shoot relationship under various N rates in the Yellow River Basin, China. Thus, the aim of this study was to assess the impacts of the application rate of N on root growth and the root-shoot relationship, to provide insight into the N regulation of root and shoot growth and N efficiency from the perspective of the root system. A field experiment conducted in 2014 and 2015 was used to determine the effects of N rates (0, 120, 240, and 480 kg ha-1) on root morphology, root distribution, the root-shoot relationship, and cotton yield. A moderate N fertilization rate (240 kg ha-1) increased root length, root surface area, and root biomass in most soil layers and significantly increased total root growth and total root biomass by more than 36.06% compared to the 0 kg ha-1 treatment. In addition, roots in the surface soil layers were more strongly affected by N fertilization than roots distributed in the deeper soil layers. Total root length, total root surface area, and root biomass in the 0-15 cm layer were significantly correlated with shoot biomass and boll biomass. In the 60-75 cm layer, total root length, total root surface area, and root length were significantly positively correlated with seed cotton yield. The application of a moderate level of N markedly increased total shoot biomass, boll biomass, and seed cotton yield. Our results show that increased shoot and boll biomasses were correlated with a significant increase in the root system especially the shallow roots in the moderate N treatment (240 kg ha-1), leading to an increase in cotton seed yield.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Jing Chen,
| | - Liantao Liu
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Zhanbiao Wang
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongjiang Zhang
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Hongchun Sun
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Shijia Song
- Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhiying Bai
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Zhanyuan Lu
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Cundong Li
- State Key Laboratory of Cotton Biology (Hebei Base)/Laboratory of Crop Growth Regulation, College of Agronomy, Agricultural University of Hebei, Baoding, China
- Cundong Li,
| |
Collapse
|
6
|
Zhou M, Sun G, Sun Z, Tang Y, Wu Y. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development. J Proteomics 2014; 105:74-84. [PMID: 24680693 DOI: 10.1016/j.jprot.2014.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/16/2014] [Accepted: 03/18/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. BIOLOGICAL SIGNIFICANCE Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches that are widely employed during last 5years, with the aim to generate novel insight useful for cotton improvement. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Meiliang Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanmin Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yixiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Li MW, Qi X, Ni M, Lam HM. Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 2013; 14:11444-83. [PMID: 23759993 PMCID: PMC3709742 DOI: 10.3390/ijms140611444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023] Open
Abstract
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the "-omics" studies, with an emphasis on their possible impacts on crop stress research and crop improvement.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Xinpeng Qi
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Meng Ni
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| |
Collapse
|