1
|
Tan S, Zhang X, Zhang Q, Li YM, Zhang P, Yin LP. HRM and CRAC in MxIRT1 act as iron sensors to determine MxIRT1 vesicle-PM fusion and metal transport. PLANT SIGNALING & BEHAVIOR 2022; 17:2005881. [PMID: 34809535 PMCID: PMC8928839 DOI: 10.1080/15592324.2021.2005881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The IRON-REGULATED TRANSPORTER1 (IRT1) is critical for iron uptake in roots, and its exocytosis to the plasma membrane (PM) is regulated by detergent-resistant membranes. However, studies on IRT1 exocytosis and function in response to iron status are limited. Presently, we found that the histidine-rich motif (HRM) of MxIRT1 could bind to iron directly and HRM determined the delivery of MxIRT1 to the PM, after which the cholesterol recognition amino acid consensus (CRAC) motif-regulated MxIRT1 mediated metal transport. IMAC assay revealed that H192 was the vital site for HRM binding to Fe2+, and metal-binding activity was stopped after the deletion of HRM (MxIRT1∆HM) or in H192 site-directed mutants (H192A). MxIRT1∆HM or H192A in transgenic yeast and Arabidopsis failed to localize in the PM and displayed impaired iron absorption. In the PM, Y266 in CRAC was required for metal transport; Y266A transgenic Arabidopsis displayed the same root length, Cd2+ flux, and Fe concentration as Arabidopsis mutant irt1 under iron-deficient conditions. Therefore, H192 in HRM may be an iron sensor to regulate delivery of MxIRT1 vesicles to the PM after binding with iron; Y266 in CRAC acts as an iron sensor for active metal transport under iron-deficient conditions.
Collapse
Affiliation(s)
- Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Xi Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Qi Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Yu-Meng Li
- College of Life Science, Capital Normal University, Beijing, China
| | - Peng Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Li-Ping Yin
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
2
|
Zhang XY, Zhang X, Zhang Q, Pan XX, Yan LC, Ma XJ, Zhao WZ, Qi XT, Yin LP. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:147-163. [PMID: 28103409 DOI: 10.1111/tpj.13482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 05/25/2023]
Abstract
Iron (Fe)-homeostasis in the plastids is closely associated with Fe transport proteins that prevent Fe from occurring in its toxic free ionic forms. However, the number of known protein families related to Fe transport in the plastids (about five) and the function of iron in non-green plastids is limited. In the present study, we report the functional characterization of Zea mays Fe deficiency-related 4 (ZmFDR4), which was isolated from a differentially expressed clone of a cDNA library of Fe deficiency-induced maize roots. ZmFDR4 is homologous to the bacterial FliP superfamily, coexisted in both algae and terrestrial plants, and capable of restoring the normal growth of the yeast mutant fet3fet4, which possesses defective Fe uptake systems. ZmFDR4 mRNA is ubiquitous in maize and is inducible by iron deficiency in wheat. Transient expression of the 35S:ZmFDR4-eGFP fusion protein in rice protoplasts indicated that ZmFDR4 maybe localizes to the plastids envelope and thylakoid. In 35S:c-Myc-ZmFDR4 transgenic tobacco, immunohistochemistry and immunoblotting confirmed that ZmFDR4 is targeted to both the chloroplast envelope and thylakoid. Meanwhile, ultrastructure analysis indicates that ZmFDR4 promotes the density of plastids and accumulation of starch grains. Moreover, Bathophenanthroline disulfonate (BPDS) colorimetry and inductively coupled plasma mass spectrometry (ICP-MS) indicate that ZmFDR4 is related to Fe uptake by plastids and increases seed Fe content. Finally, 35S:c-Myc-ZmFDR4 transgenic tobacco show enhanced photosynthetic efficiency. Therefore, the results of the present study demonstrate that ZmFDR4 functions as an iron transporter in monocot plastids and provide insight into the process of Fe uptake by plastids.
Collapse
Affiliation(s)
- Xiu-Yue Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xi Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Qi Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Xi Pan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Luo-Chen Yan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Juan Ma
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Wei-Zhong Zhao
- Institute of Mathematics and Interdisciplinary Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Ting Qi
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Li-Ping Yin
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| |
Collapse
|
3
|
Tan S, Liu F, Pan XX, Zang YP, Jin F, Zu WX, Qi XT, Xiao W, Yin LP. CSN6, a subunit of the COP9 signalosome, is involved in early response to iron deficiency in Oryza sativa. Sci Rep 2016; 6:25485. [PMID: 27137867 PMCID: PMC4853791 DOI: 10.1038/srep25485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/19/2016] [Indexed: 12/22/2022] Open
Abstract
The COP9 signalosome (CSN) plays an important role in proteasome-mediated degradation by regulating CUL1 rubylation of the SCF ligase and is involved in many crucial biological processes. Here, we demonstrate a link between IDEF1 accumulation and the decline in COP9 derubylation activity in response to iron deficiency (-Fe) in rice (Oryza sativa). CSN6 expression is rapidly down-regulated during Fe depletion, contributing to reduced CSN activity, as judged by CSN5 and CUL1 expression, indicating CSN6 is involved in the early stage response of -Fe. In contrast to CSN6, the IDEF1 protein and expression of several iron uptake/utilisation-related genes are increased in response to -Fe. Thus, we constructed CSN6 transgenic sense and antisense lines and found that experimental depletion of CSN6 results in accumulation of the IDEF1 protein and up-regulation of several iron uptake/utilisation-related genes. Furthermore, IDEF1 can be decorated with K48-linked polyubiquitin and degraded via the 26S proteasome. Accumulated IDEF1 in antisense lines led to increased chlorophyll and Fe content in seedlings during -Fe. Collectively, the cellular CSN6 level is decreased during early stages of -Fe to ensure the rapid accumulation of IDEF1, which in turn up-regulates several iron uptake/utilisation-related genes to help overcome -Fe stress in rice.
Collapse
Affiliation(s)
- Song Tan
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Fang Liu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiao-Xi Pan
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yue-Peng Zang
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Fei Jin
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Wei-Xi Zu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiao-Ting Qi
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Wei Xiao
- College of Life Science, Capital Normal University, Beijing 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Li-Ping Yin
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
4
|
Li S, Zhang X, Zhang XY, Xiao W, Berry JO, Li P, Jin S, Tan S, Zhang P, Zhao WZ, Yin LP. Expression ofMalus xiaojinensisIRT1 (MxIRT1) protein in transgenic yeast cells leads to degradation through autophagy in the presence of excessive iron. Yeast 2015; 32:499-517. [DOI: 10.1002/yea.3075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 02/02/2023] Open
Affiliation(s)
- Shuang Li
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Xi Zhang
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Xiu-Yue Zhang
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Wei Xiao
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
- Department of Microbiology and Immunology; University of Saskatchewan; Saskatoon SK Canada
| | - James O. Berry
- Department of Biological Sciences; State University of New York; Buffalo NY USA
| | - Peng Li
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Si Jin
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Song Tan
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Peng Zhang
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| | - Wei-Zhong Zhao
- Institute of Mathematics and Interdisciplinary Sciences; Capital Normal University; Beijing People's Republic of China
| | - Li-Ping Yin
- College of Life Sciences; Capital Normal University; Beijing People's Republic of China
| |
Collapse
|
5
|
Li S, Pan XX, Berry JO, Wang Y, Ma S, Tan S, Xiao W, Zhao WZ, Sheng XY, Yin LP. OsSEC24, a functional SEC24-like protein in rice, improves tolerance to iron deficiency and high pH by enhancing H(+) secretion mediated by PM-H(+)-ATPase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:61-71. [PMID: 25711814 DOI: 10.1016/j.plantsci.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/29/2014] [Accepted: 01/01/2015] [Indexed: 05/16/2023]
Abstract
Iron is abundant in the soil, but its low solubility in neutral or alkaline soils limits its uptake. Plants can rely on rhizosphere acidification to increase iron solubility. OsSEC27p was previously found to be a highly up-regulated gene in iron-deficient rice roots. Here, pH-dependent complementation assays using yeast mutants sec24Δ/SEC24 and sec27Δ/SEC27 showed that OsSEC27 could functionally complement SEC24 but not SEC27 in yeast; thus, it was renamed as OsSEC24. We found that OsSEC24-transgenic tobacco plants increased the length and number of roots under iron deficiency at pH 8.0. To explore how OsSEC24 confers tolerance to iron deficiency, we utilized transgenic tobacco, rice and rice protoplasts. H(+) flux measurements using Non-invasive Micro-test Technology (NMT) indicated that the transgenic OsSEC24 tobacco and rice enhanced H(+) efflux under iron deficiency. Conversely, the application of plasma membrane PM-H(+)-ATPase inhibitor vanadate elucidated that H(+) secretion increased by OsSEC24 was mediated by PM-H(+)-ATPase. OsPMA2 was used as a representative of iron deficiency-responsive PM-H(+)-ATPases in rice root via RT-PCR analysis. In transgenic rice protoplasts OsPMA2 was packaged into OsSEC24 vesicles after export from the ER through confocal-microscopy observation. Together, OsSEC24 vesicles, along with PM-H(+)-ATPases stimulate roots formation under iron deficiency by enhancing rhizosphere acidification.
Collapse
Affiliation(s)
- Shuang Li
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Xiao-Xi Pan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - James O Berry
- Department of Biological Sciences, State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Shuang Ma
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Song Tan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Wei-Zhong Zhao
- Institute of Mathematics and Interdisciplinary Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Xian-Yong Sheng
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China
| | - Li-Ping Yin
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Beijing 100048, China.
| |
Collapse
|
6
|
Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 2014; 24:109-22. [PMID: 25099285 DOI: 10.1007/s11248-014-9822-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/28/2014] [Indexed: 01/01/2023]
Abstract
Iron and zinc are essential in plant and human nutrition. Iron deficiency has been one of the causes of human mortality, especially in developing countries with high rice consumption. MxIRT1 is a ferrous transporter that has been screened from an iron-efficient genotype of the apple tree, Malus xiaojinensis Cheng et Jiang. In order to produce Fe-biofortified rice with MxIRT1 to solve the Fe-deficiency problem, plant expression vectors of pCAMBIA1302-MxIRT1:GFP and pCAMBIA1302-anti MxIRT1:GFP were constructed that led to successful production of transgenic rice. The transgenic plant phenotypes showed that the expression of endogenous OsIRT1 was suppressed by anti-MxIRT1 in antisense lines that acted as an opposing control, while sense lines had a higher tolerance under Zn- and Fe-deficient conditions. The iron and zinc concentration in T3 seeds increased by three times in sense lines when compared to the wild type. To understand the MxIRT1 cadmium uptake, the MxIRT1 cadmium absorption trait was compared with AtIRT1 and OsIRT1 in transgenic rice protoplasts, and it was found that MxIRT1 had the lowest Cd uptake capacity. MxIRT1 transgenic tobacco-cultured bright yellow-2 (BY-2) cells and rice lines were subjected to different Fe conditions and the results from the non-invasive micro-test technique showed that iron was actively transported compared to cadmium as long as iron was readily available in the environment. This suggests that MxIRT1 is a good candidate gene for plant Fe and Zn biofortification.
Collapse
|