1
|
Identification of quantitative trait loci for growth traits in red swamp crayfish (Procambarus clarkii). AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Li J. Identification of Male-Specific Molecular Marker and Development of PCR-Based Genetic Sex Identification Technique in Spotted Knifejaw (Oplegnathus punctatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:969-978. [PMID: 36109406 DOI: 10.1007/s10126-022-10160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Spotted knifejaw (Oplegnathus punctatus) is a marine teleost species that is economically important for aquaculture and marine pasture proliferation and shows obvious bisexual growth dimorphism, but molecular sex markers are currently lacking. A 290 bp (base pair) insertion with two fragments (230 bp and 60 bp) was identified in male individuals of O. punctatus based on whole-genome sequencing scanning and structural variation analyses. The gene annotation results showed that the insertion event occurred in the Igfn1 gene of male O. punctatus. The results of amino acid analysis further showed that the insertion event resulted in the functional variation of Igfn1 in male O. punctatus, and recombination caused the inactivation of Igfn1. According to the male-specific insertion information, we designed a PCR-based genetic amplification technique for rapid sex identification in O. punctatus. The results of agarose gel electrophoresis showed that two DNA fragments of 635 bp and 925 bp were amplified in male O. punctatus, while only a single DNA fragment of 635 bp was amplified in female individuals. The sex of individuals identified by this method was consistent with their known phenotypic sex, which will improve sex identification efficiency. This method provides a new DNA marker for rapid sex identification in O. punctatus, which has great significance and application value in monosex breeding and provides new insights for the study of Igfn1 gene recombination and inactivation in male O. punctatus.
Collapse
Affiliation(s)
- Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Weihai Haohuigan Marine Biotechnology Co, Weihai, 264400, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Development and Validation of Sex-Specific Markers in Pelodiscus Sinensis Using Restriction Site-Associated DNA Sequencing. Genes (Basel) 2019; 10:genes10040302. [PMID: 30991756 PMCID: PMC6523797 DOI: 10.3390/genes10040302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
The sex of an animal influences its economic traits, especially in species displaying sexual dimorphism. The Chinese soft-shelled turtle, Pelodiscus sinensis, is an economically important aquatic species that shows significant male sexual dimorphism, with a large body size, faster growth, a thick and wide calipash, and lower body fat. In this study, ten male and ten female turtles were subjected to restriction site-associated DNA sequencing (RAD-seq) using the Hi-Seq 4000 sequencing platform to isolate female-specific DNA fragments. We identified 5967 bp and 6532 bp fragments using genome walking. Three female-specific markers designed from these two fragments were confirmed to separate the sexes of Pelodiscus sinensis perfectly. One of the female-specific markers showed dosage association in female and male individuals. Individuals from different populations (n = 296) were used to validate that the female-specific markers could identify the genetic sex of Pelodiscus sinensis with 100% accuracy. The results of the present study demonstrated that RAD-seq was useful to develop sex-related markers in animals, and verified that the sex determination system of Pelodiscus sinensis belonged to the ZZ/ZW heterogametic system. Importantly, the developed markers could lead to a method for sex-controlled breeding in the Chinese soft-shelled turtle.
Collapse
|
4
|
Zheng X, Kuang Y, Lv W, Cao D, Sun Z, Jin W, Sun X. Quantitative trait loci for morphometric traits in multiple families of common carp (Cyprinus carpio). SCIENCE CHINA-LIFE SCIENCES 2016; 60:287-297. [PMID: 27826895 DOI: 10.1007/s11427-016-0182-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/08/2016] [Indexed: 11/27/2022]
Abstract
Quantitative trait locus (QTL) mapping is frequently used to understand the genetic architecture of quantitative traits. Herein, we performed a genome scan for QTL affecting the morphometric characters in eight full-sib families containing 522 individuals using different statistical methods (Sib-pair and half-sib model). A total of 194 QTLs were detected in 25 different regions on 10 linkage groups (LGs). Among them, 37 QTLs on five LGs (eight, 13, 24, 40 and 45) were significant (5% genome-wide level), while the remaining 40 (1% chromosome-wide level) and 117 (5% chromosome-wide level) indicated suggestive effect on those traits. Heritabilities for most morphometric traits were moderate to high, ranging from 0.21 to 0.66, with generally strong phenotypic and genetic correlations between the traits. A large number of QTLs for morphometric traits were co-located, consistent with their high correlations, and may reflect pleiotropic effect on the same genes. Biological pathways were mapped for possible candidate genes on QTL regions. One significantly enriched pathway was identified on LG45, which had a P-value of 0.04 and corresponded to the "regulation of actin cytoskeleton pathway". The results are expected to be useful in marker-assisted selection (MAS) and provide valuable information for the study of gene pathway for morphometric and growth traits of the common carp.
Collapse
Affiliation(s)
- Xianhu Zheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Weihua Lv
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Dingchen Cao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Zhipeng Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Wu Jin
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
5
|
Fu B, Liu H, Yu X, Tong J. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis). Sci Rep 2016; 6:28679. [PMID: 27345016 PMCID: PMC4921863 DOI: 10.1038/srep28679] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022] Open
Abstract
Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp.
Collapse
Affiliation(s)
- Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072,China
| |
Collapse
|
6
|
An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio). Sci Rep 2016; 6:26693. [PMID: 27225429 PMCID: PMC4880943 DOI: 10.1038/srep26693] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
High density genetic linkage maps are essential for QTL fine mapping, comparative genomics and high quality genome sequence assembly. In this study, we constructed a high-density and high-resolution genetic linkage map with 28,194 SNP markers on 14,146 distinct loci for common carp based on high-throughput genotyping with the carp 250 K single nucleotide polymorphism (SNP) array in a mapping family. The genetic length of the consensus map was 10,595.94 cM with an average locus interval of 0.75 cM and an average marker interval of 0.38 cM. Comparative genomic analysis revealed high level of conserved syntenies between common carp and the closely related model species zebrafish and medaka. The genome scaffolds were anchored to the high-density linkage map, spanning 1,357 Mb of common carp reference genome. QTL mapping and association analysis identified 22 QTLs for growth-related traits and 7 QTLs for sex dimorphism. Candidate genes underlying growth-related traits were identified, including important regulators such as KISS2, IGF1, SMTLB, NPFFR1 and CPE. Candidate genes associated with sex dimorphism were also identified including 3KSR and DMRT2b. The high-density and high-resolution genetic linkage map provides an important tool for QTL fine mapping and positional cloning of economically important traits, and improving common carp genome assembly.
Collapse
|
7
|
Lv W, Zheng X, Kuang Y, Cao D, Yan Y, Sun X. QTL variations for growth-related traits in eight distinct families of common carp (Cyprinus carpio). BMC Genet 2016; 17:65. [PMID: 27150452 PMCID: PMC4858896 DOI: 10.1186/s12863-016-0370-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/15/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Comparing QTL analyses of multiple pair-mating families can provide a better understanding of important allelic variations and distributions. However, most QTL mapping studies in common carp have been based on analyses of individual families. In order to improve our understanding of heredity and variation of QTLs in different families and identify important QTLs, we performed QTL analysis of growth-related traits in multiple segregating families. RESULTS We completed a genome scan for QTLs that affect body weight (BW), total length (TL), and body thickness (BT) of 522 individuals from eight full-sib families using 250 microsatellites evenly distributed across 50 chromosomes. Sib-pair and half-sib model mapping identified 165 QTLs on 30 linkage groups. Among them, 10 (genome-wide P <0.01 or P < 0.05) and 28 (chromosome-wide P < 0.01) QTLs exhibited significant evidence of linkage, while the remaining 127 exhibited a suggestive effect on the above three traits at a chromosome-wide (P < 0.05) level. Multiple QTLs obtained from different families affect BW, TL, and BT and locate at close or identical positions. It suggests that same genetic factors may control variability in these traits. Furthermore, the results of the comparative QTL analysis of multiple families showed that one QTL was common in four of the eight families, nine QTLs were detected in three of the eight families, and 26 QTLs were found common to two of the eight families. These common QTLs are valuable candidates in marker-assisted selection. CONCLUSION A large number of QTLs were detected in the common carp genome and associated with growth-related traits. Some of the QTLs of different growth-related traits were identified at similar chromosomal regions, suggesting a role for pleiotropy and/or tight linkage and demonstrating a common genetic basis of growth trait variations. The results have set up an example for comparing QTLs in common carp and provided insights into variations in the identified QTLs affecting body growth. Discovery of these common QTLs between families and growth-related traits represents an important step towards understanding of quantitative genetic variation in common carp.
Collapse
Affiliation(s)
- Weihua Lv
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Xianhu Zheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Youyi Kuang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Dingchen Cao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Yunqin Yan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
8
|
Laghari MY, Lashari P, Zhang X, Xu P, Narejo NT, Xin B, Zhang Y, Sun X. QTL mapping for economically important traits of common carp (Cyprinus carpio L.). J Appl Genet 2014; 56:65-75. [PMID: 25078056 DOI: 10.1007/s13353-014-0232-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
Quantitative trait loci (QTL) were analyzed for three economically important traits, i.e., body weight (BW), body length (BL), and body thickness (BT), in an F1 family of common carp holding the 190 progeny. A genetic linkage map spanning 3,301 cM in 50 linkage groups with 627 markers and an average distance of 5.6 cM was utilized for QTL mapping. Sixteen QTLs associated with all three growth-related traits were scattered across ten linkage groups, LG6, LG10, LG17, LG19, LG25, LG27, LG28, LG29, LG30, and LG39. Six QTLs for BW and five each for BL and BT explained phenotypic variance in the range 17.0-32.1%. All the nearest markers of QTLs were found to be significantly (p ≤ 0.05) related with the trait. Among these QTLs, a total of four, two (qBW30 and qBW39) related with BW, one (qBL39) associated with BL, and one (qBT29) related to BT, were found to be the major QTLs with a phenotypic variance of >20%. qBW30 and qBW39 with the nearest markers HLJ1691 and HLJ1843, respectively, show significant values of 0.0038 and 0.0031, correspondingly. QTLs qBL39 and qBT29 were found to have significant values of 0.0047 and 0.0015, respectively. Three QTLs (qBW27, qBW30, qBW39) of BW, two for BL (qBL19, qBL39), and two for BT (qBT6, qBT25) found in this study were similar to populations with different genetic backgrounds. In this study, the genomic region controlling economically important traits were located. These genomic regions will be the major sources for the discovery of important genes and pathways associated with growth-related traits in common carp.
Collapse
Affiliation(s)
- Muhammad Younis Laghari
- School of Chemical Engineering and Environment, Beijing Institute of Technology, 100081, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Robinson N, Baranski M, Mahapatra KD, Saha JN, Das S, Mishra J, Das P, Kent M, Arnyasi M, Sahoo PK. A linkage map of transcribed single nucleotide polymorphisms in rohu (Labeo rohita) and QTL associated with resistance to Aeromonas hydrophila. BMC Genomics 2014; 15:541. [PMID: 24984705 PMCID: PMC4226992 DOI: 10.1186/1471-2164-15-541] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 06/17/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Production of carp dominates world aquaculture. More than 1.1 million tonnes of rohu carp, Labeo rohita (Hamilton), were produced in 2010. Aeromonas hydrophila is a bacterial pathogen causing aeromoniasis in rohu, and is a major problem for carp production worldwide. There is a need to better understand the genetic mechanisms affecting resistance to this disease, and to develop tools that can be used with selective breeding to improve resistance. Here we use a 6 K SNP array to genotype 21 full-sibling families of L. rohita that were experimentally challenged intra-peritoneally with a virulent strain of A. hydrophila to scan the genome for quantitative trait loci associated with disease resistance. RESULTS In all, 3193 SNPs were found to be informative and were used to create a linkage map and to scan for QTL affecting resistance to A. hydrophila. The linkage map consisted of 25 linkage groups, corresponding to the number of haploid chromosomes in L. rohita. Male and female linkage maps were similar in terms of order, coverage (1384 and 1393 cM, respectively) and average interval distances (1.32 and 1.35 cM, respectively). Forty-one percent of the SNPs were annotated with gene identity using BLAST (cut off E-score of 0.001). Twenty-one SNPs mapping to ten linkage groups showed significant associations with the traits hours of survival and dead or alive (P <0.05 after Bonferroni correction). Of the SNPs showing significant or suggestive associations with the traits, several were homologous to genes of known immune function or were in close linkage to such genes. Genes of interest included heat shock proteins (70, 60, 105 and "small heat shock proteins"), mucin (5b precursor and 2), lectin (receptor and CD22), tributyltin-binding protein, major histocompatibility loci (I and II), complement protein component c7-1, perforin 1, ubiquitin (ligase, factor e4b isoform 2 and conjugation enzyme e2 c), proteasome subunit, T-cell antigen receptor and lymphocyte specific protein tyrosine kinase. CONCLUSIONS A panel of markers has been identified that will be validated for use with both genomic and marker-assisted selection to improve resistance of L. rohita to A. hydrophila.
Collapse
Affiliation(s)
- Nicholas Robinson
- Breeding and Genetics, Nofima, PO Box 5010, 1432 Ås, Norway
- Biological Sciences, Flinders University, Bedford Park, Australia
| | | | - Kanta Das Mahapatra
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Jatindra Nath Saha
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Sweta Das
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Jashobanta Mishra
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Paramananda Das
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Matthew Kent
- Centre for Integrative Genetics, University of Life Sciences, Ås, Norway
| | - Mariann Arnyasi
- Centre for Integrative Genetics, University of Life Sciences, Ås, Norway
| | - Pramoda Kumar Sahoo
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| |
Collapse
|
10
|
Xu J, Zhao Z, Zhang X, Zheng X, Li J, Jiang Y, Kuang Y, Zhang Y, Feng J, Li C, Yu J, Li Q, Zhu Y, Liu Y, Xu P, Sun X. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genomics 2014; 15:307. [PMID: 24762296 PMCID: PMC4234440 DOI: 10.1186/1471-2164-15-307] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/17/2014] [Indexed: 12/30/2022] Open
Abstract
Background A large number of single nucleotide polymorphisms (SNPs) have been identified in common carp (Cyprinus carpio) but, as yet, no high-throughput genotyping platform is available for this species. C. carpio is an important aquaculture species that accounts for nearly 14% of freshwater aquaculture production worldwide. We have developed an array for C. carpio with 250,000 SNPs and evaluated its performance using samples from various strains of C. carpio. Results The SNPs used on the array were selected from two resources: the transcribed sequences from RNA-seq data of four strains of C. carpio, and the genome re-sequencing data of five strains of C. carpio. The 250,000 SNPs on the resulting array are distributed evenly across the reference C.carpio genome with an average spacing of 6.6 kb. To evaluate the SNP array, 1,072 C. carpio samples were collected and tested. Of the 250,000 SNPs on the array, 185,150 (74.06%) were found to be polymorphic sites. Genotyping accuracy was checked using genotyping data from a group of full-siblings and their parents, and over 99.8% of the qualified SNPs were found to be reliable. Analysis of the linkage disequilibrium on all samples and on three domestic C.carpio strains revealed that the latter had the longer haplotype blocks. We also evaluated our SNP array on 80 samples from eight species related to C. carpio, with from 53,526 to 71,984 polymorphic SNPs. An identity by state analysis divided all the samples into three clusters; most of the C. carpio strains formed the largest cluster. Conclusions The Carp SNP array described here is the first high-throughput genotyping platform for C. carpio. Our evaluation of this array indicates that it will be valuable for farmed carp and for genetic and population biology studies in C. carpio and related species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peng Xu
- Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China.
| | | |
Collapse
|
11
|
Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H, Liu Z. Development of the catfish 250K SNP array for genome-wide association studies. BMC Res Notes 2014; 7:135. [PMID: 24618043 PMCID: PMC3995806 DOI: 10.1186/1756-0500-7-135] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quantitative traits, such as disease resistance, are most often controlled by a set of genes involving a complex array of regulation. The dissection of genetic basis of quantitative traits requires large numbers of genetic markers with good genome coverage. The application of next-generation sequencing technologies has allowed discovery of over eight million SNPs in catfish, but the challenge remains as to how to efficiently and economically use such SNP resources for genetic analysis. RESULTS In this work, we developed a catfish 250K SNP array using Affymetrix Axiom genotyping technology. The SNPs were obtained from multiple sources including gene-associated SNPs, anonymous genomic SNPs, and inter-specific SNPs. A set of 640K high-quality SNPs obtained following specific requirements of array design were submitted. A panel of 250,113 SNPs was finalized for inclusion on the array. The performance evaluated by genotyping individuals from wild populations and backcross families suggested the good utility of the catfish 250K SNP array. CONCLUSIONS This is the first high-density SNP array for catfish. The array should be a valuable resource for genome-wide association studies (GWAS), fine QTL mapping, high-density linkage map construction, haplotype analysis, and whole genome-based selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
12
|
Mapping quantitative trait loci (QTL) for body weight, length and condition factor traits in backcross (BC1) family of Common carp (Cyprinus carpio L.). Mol Biol Rep 2013; 41:721-31. [PMID: 24368591 DOI: 10.1007/s11033-013-2911-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/16/2013] [Indexed: 01/24/2023]
Abstract
Body weight and length are economical important traits in aquaculture species influenced by quantitative trait loci (QTL) and environmental factors. In this study, a backcross (BC1) common carp family, with 86 progeny, was utilized to construct genetic map for preliminary QTL mapping. The genetic map was constructed with 366 markers, including 191 SNP from gene, coverage 50 linkage groups with an average marker distance of 18.5 cM. A total of fourteen QTLs associated with body weight (BW), body length (BL) and condition factor (K) were detected on ten linkage groups (LGs). Among these QTLs detected, three (qBW8, qBL8 and qK8) were associated with BW, BL and K respectively, were mapped on LG8. qBW8 and qK8 were identified on similar interval neared locus HLJ2394 explained 14.9 and 20.9 % of the phenotype variance, while qBL8 was identified on separate nearby locus HLJ571 with 30.8 % of phenotype variance. Two QTLs, qBW13 and qK13, related with BW and K separately, were found on LG13 at different locus with phenotype variance of 25.3 and 20.9 %. Other two QTLs, qBW19 and qBL19, associated to BW and BL were mapped on same region near SNP0626 on LG19, and explained 10.3 and 15.6 % of phenotype variance. While other seven QTLs related with BW and BL were located on different LGs. Confidential interval was ranged from 1.1 to 10 cM in the present study. These markers, with lower QTL interval, have great influence on the body weight and length. Therefore, these QTLs will be helpful to find out the genes related with specific trait.
Collapse
|
13
|
Dan C, Mei J, Wang D, Gui JF. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish. Int J Biol Sci 2013; 9:1043-9. [PMID: 24250249 PMCID: PMC3831117 DOI: 10.7150/ijbs.7203] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/18/2013] [Indexed: 11/09/2022] Open
Abstract
Pf62-Y and Pf62-X is a pair of allelic Y chromosome-linked and X chromosome-linked markers, and have been used to identify YY super-males, XY males and XX females for commercial production of all-male populations in yellow catfish (Pelteobagrus fulvidraco). However, the SCAR primers used previously have only two nucleotide difference, which restricts the wide utility because of nucleotide polymorphism. In this study, a continuous 8102 bp Pf62-Y sequence and a 5362 bp Pf62-X sequence have been cloned by genome walking, and significant genetic differentiation has been revealed between the corresponding X and Y chromosome allele sequences. Moreover, three pairs of primers were designed to efficiently identify YY super-males, XY males and XX females in an artificial breeding population, and to distinguish XY males and XX females in various wild populations. Together, the three new sex-specific genetic markers develop a highly stable and efficient method for genetic sex identification and sex control application in sustainable aquaculture of all-male yellow catfish.
Collapse
Affiliation(s)
- Cheng Dan
- 1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|