1
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Zhu Y, Wang Y, Zhang S, Li J, Li X, Ying Y, Yuan J, Chen K, Deng S, Wang Q. Association of polymicrobial interactions with dental caries development and prevention. Front Microbiol 2023; 14:1162380. [PMID: 37275173 PMCID: PMC10232826 DOI: 10.3389/fmicb.2023.1162380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Dental caries is a common oral disease. In many cases, disruption of the ecological balance of the oral cavity can result in the occurrence of dental caries. There are many cariogenic microbiota and factors, and their identification allows us to take corresponding prevention and control measures. With the development of microbiology, the caries-causing bacteria have evolved from the traditional single Streptococcus mutans to the discovery of oral symbiotic bacteria. Thus it is necessary to systematically organized the association of polymicrobial interactions with dental caries development. In terms of ecology, caries occurs due to an ecological imbalance of the microbiota, caused by the growth and reproduction of cariogenic microbiota due to external factors or the disruption of homeostasis by one's own factors. To reduce the occurrence of dental caries effectively, and considering the latest scientific viewpoints, caries may be viewed from the perspective of ecology, and preventive measures can be taken; hence, this article systematically summarizes the prevention and treatment of dental caries from the aspects of ecological perspectives, in particular the ecological biofilm formation, bacterial quorum sensing, the main cariogenic microbiota, and preventive measures.
Collapse
Affiliation(s)
- Yimei Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Shuyang Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Xin Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuanyuan Ying
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jinna Yuan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Rather SA, Sharma SC, Mahmood A. Antibodies generated against dextransucrase exhibit potential anticariostatic properties in Streptococcus mutans. Appl Microbiol Biotechnol 2020; 104:1761-1772. [PMID: 31900558 PMCID: PMC7223241 DOI: 10.1007/s00253-019-10327-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Streptococcus mutans is a common principal causative agent of dental caries. In this communication, we describe that the antibodies raised against purified dextransucrase effectively inhibited the growth of S. mutans. The purified enzyme showed 58-fold enrichment, 17.5% yield and a specific activity of 3.96 units/mg protein. Purified IgG fraction of the antibody showed significant affinity with the antigenic protein. Immunotritation of the enzyme with dextransucrase antibody showed a gradual increase in inhibition of dextransucrase activity. The growth of S. mutans was also inhibited by 85% in the presence of 28 μg of IgG fraction of the antibody. Antibodies also impaired glucosyltransferase activity (72.8%) and biofilm formation by 92.6% in S. mutans. Western blot analysis revealed no cross reactivity with the various tissues of mice, rat, rabbit and humans. Dot blot analysis showed little reactivity with Lactobacillus acidophilus and Staphylococcus aureus and there was no reactivity with other bacterial strains like Enterococcus faecalis, Escherichia coli and Salmonella typhimurium. These findings suggest that antibody raised against dextransucrase exhibit inhibitory effects on the growth of S. mutans and biofilm formation with no reactivity with various mammalian tissues, thus it could be an effective anticariogenic agent.
Collapse
Affiliation(s)
- Shabeer Ahmad Rather
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | | | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Sector 14, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
5
|
Synthetic antigen-binding fragments (Fabs) against S. mutans and S. sobrinus inhibit caries formation. Sci Rep 2018; 8:10173. [PMID: 29976956 PMCID: PMC6033933 DOI: 10.1038/s41598-018-28240-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023] Open
Abstract
Streptococcus mutans and Streptococcus sobrinus are the main causative agents of human dental caries. Current strategies for treating caries are costly and do not completely eradicate them completely. Passive immunization using nonhuman antibodies against Streptococcal surface antigens has shown success in human trials, however they often invoke immune reactions. We used phage display to generate human antigen-binding fragments (Fabs) against S. mutans and S. sobrinus. These Fabs were readily expressed in E. coli and bound to the surface S. mutans and S. sobrinus. Fabs inhibited sucrose-induced S. mutans and S. sobrinus biofilm formation in vitro and a combination of S. mutans and S. sobrinus Fabs prevented dental caries formation in a rat caries model. These results demonstrated that S. mutans and S. sobrinus Fabs could be used in passive immunization strategies to prevent dental caries. In the future, this strategy may be applied towards a caries therapy, whereby Fabs are topically applied to the tooth surface.
Collapse
|
6
|
Yang J, Sun Y, Bao R, Zhou D, Yang Y, Cao Y, Yu J, Zhao B, Li Y, Yan H, Zhong M. Second-generation Flagellin-rPAc Fusion Protein, KFD2-rPAc, Shows High Protective Efficacy against Dental Caries with Low Potential Side Effects. Sci Rep 2017; 7:11191. [PMID: 28894188 PMCID: PMC5593867 DOI: 10.1038/s41598-017-10247-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Dental caries is one of the most common global chronic diseases affecting all ages of the population; thus a vaccine against caries is urgently needed. Our previous studies demonstrated that a fusion protein, KF-rPAc, in which rPAc of S. mutans is directly fused to the C-terminal of E. coli-derived flagellin (KF), could confer high prophylactic and therapeutic efficiency against caries. However, possible side effects, including the high antigenicity of flagellin and possible inflammatory injury induced by flagellin, may restrict its clinical usage. Here, we produced a second-generation flagellin-rPAc fusion protein, KFD2-rPAc, by replacing the main antigenicity region domains D2 and D3 of KF with rPAc. Compared with KF-rPAc, KFD2-rPAc has lower TLR5 agonist efficacy and induces fewer systemic inflammatory responses in mice. After intranasal immunization, KFD2-rPAc induces significantly lower flagellin-specific antibody responses but a comparable level of rPAc-specific antibody responses in mice. More importantly, in rat challenge models, KFD2-rPAc induces a robust rPAc-specific IgA response, and confers efficient prophylactic and therapeutic efficiency against caries as does KF-rPAc, while the flagellin-specific antibody responses are highly reduced. In conclusion, low side effects and high protective efficiency against caries makes the second-generation flagellin-rPAc fusion protein, KFD2-rPAc, a promising vaccine candidate against caries.
Collapse
Affiliation(s)
- Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Ying Sun
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Rong Bao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan, Hubei, 430071, China
| | - Dihan Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yuan Cao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yaoming Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
| |
Collapse
|
7
|
Santín GRG, Salgado AV, Bastida NMM, Gómez IDLR, Benítez JGS, Zerón HM. Salivary Immunoglobulin Gene Expression in Patients with Caries. Open Access Maced J Med Sci 2017; 5:236-243. [PMID: 28507635 PMCID: PMC5420781 DOI: 10.3889/oamjms.2017.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 01/14/2017] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND: Immunoglobulins mediate the host’s humoral immune response are expressed in saliva. AIM: To quantify the FcαR, FcγRIIB, and FcαμR gene expression in the saliva of Mexican patients with caries in mixed and permanent dentition. SUBJECTS AND METHODS: This was a comparative cross-sectional study. mRNA was isolated from 200 μL of saliva following the RNA III Tissue Fresh-frozen protocol of the MagNA Pure LC Instrument 2.0 (Roche Diagnostics GmbH, Nederland BV) and the FcαR, FcαμR and FcγRIIB were quantified through TaqMan Assays. RESULTS: One hundred individuals, 50 with mixed dentition and 50 with permanent dentition, were included in the study. Statistically, it was found a significant difference (p = 0.025) in the IgG (FcγRIIB) expression between the studied groups. CONCLUSION: Although we confirmed the existence of FcαR, FcγRIIB and FcαμR gene expression in saliva, only a significant difference in the expression of FcγRIIB between the mixed dentition and permanent dentition was found.
Collapse
Affiliation(s)
- Gema Regina Guadarrama Santín
- Laboratory of Molecular Biology, Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Jesús Carranza 205, Col. Universidad, C.P. 50130, Toluca, México, Mexico
| | - Angel Visoso Salgado
- Laboratory of Molecular Biology, Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Jesús Carranza 205, Col. Universidad, C.P. 50130, Toluca, México, Mexico
| | - Norma Margarita Montiel Bastida
- Laboratory of Molecular Biology, Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Jesús Carranza 205, Col. Universidad, C.P. 50130, Toluca, México, Mexico
| | - Isaías de la Rosa Gómez
- Laboratory of Molecular Biology, Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Jesús Carranza 205, Col. Universidad, C.P. 50130, Toluca, México, Mexico
| | - Jonnathan Guadalupe Santillán Benítez
- Laboratory of Molecular Biology, Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Jesús Carranza 205, Col. Universidad, C.P. 50130, Toluca, México, Mexico
| | - Hugo Mendieta Zerón
- Laboratory of Molecular Biology, Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), Jesús Carranza 205, Col. Universidad, C.P. 50130, Toluca, México, Mexico
| |
Collapse
|
8
|
Sohn SJ, Tam CY, Jeong HI. How do the strength and type of ENSO affect SST predictability in coupled models. Sci Rep 2016; 6:33790. [PMID: 27650415 PMCID: PMC5030669 DOI: 10.1038/srep33790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022] Open
Abstract
The effects of amplitude and type of the El Niño-Southern Oscillation (ENSO) on sea surface temperature (SST) predictability on a global scale were investigated, by examining historical climate forecasts for the period 1982–2006 from air-sea coupled seasonal prediction systems. Unlike in previous studies, SST predictability was evaluated in different phases of ENSO and for episodes with various strengths. Our results reveal that the seasonal mean Niño 3.4 index is well predicted in a multi-model ensemble (MME), even for four-month lead predictions. However, coupled models have particularly low skill in predicting the global SST pattern during weak ENSO events. During weak El Niño events, which are also El Niño Modoki in this period, a number of models fail to reproduce the associated tri-pole SST pattern over the tropical Pacific. During weak La Niña periods, SST signals in the MME tend to be less persistent than observations. Therefore, a good ENSO forecast does not guarantee a good SST prediction from a global perspective. The strength and type of ENSO need to be considered when inferring global SST and other climate impacts from model-predicted ENSO information.
Collapse
Affiliation(s)
- Soo-Jin Sohn
- Climate Prediction Department, APEC Climate Center (APCC), Busan, Republic of Korea
| | - Chi-Yung Tam
- Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong, China
| | - Hye-In Jeong
- Climate Prediction Department, APEC Climate Center (APCC), Busan, Republic of Korea
| |
Collapse
|
9
|
Tang W, Bhatt A, Smith AN, Crowley PJ, Brady LJ, Long JR. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2016; 64:153-64. [PMID: 26837620 PMCID: PMC4756430 DOI: 10.1007/s10858-016-0017-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.
Collapse
Affiliation(s)
- Wenxing Tang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam N Smith
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Paula J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L Jeannine Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Bachtiar EW, Soejoedono RD, Bachtiar BM, Henrietta A, Farhana N, Yuniastuti M. Effects of soybean milk, chitosan, and anti-Streptococcus mutans IgY in malnourished rats' dental biofilm and the IgY persistency in saliva. Interv Med Appl Sci 2015; 7:118-23. [PMID: 26525071 DOI: 10.1556/1646.7.2015.3.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/17/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study aims to evaluate the eff ect of soybean milk containing a combination of anti-Streptococcus mutans IgY and chitosan to the colonization of S. mutans in the saliva and to the IgY persistency in the saliva. MATERIALS AND METHODS Experimental malnourished Sprague-Dawley rats were fed with soybean milk that is enriched with anti-S. mutans IgY and chitosan. After 15 days of feeding, we evaluated the S. mutans in dental biofilm, in addition to the persistency level of anti-S. mutans IgY. RESULTS The rats that received soybean milk supplemented with anti-S. mutans IgY had the lowest number of S. mutans colonies (p < 0.05). Anti-S. mutans IgY was detected in saliva after 15 days of feeding. CONCLUSIONS Soybean milk supplemented with anti-S. mutans IgY and chitosan could signifi cantly reduce S. mutans biofilm, and the supplemented anti-S. mutans IgY persisted in these rats' saliva following the feeding period.
Collapse
|
11
|
Bao R, Yang JY, Sun Y, Zhou DH, Yang Y, Li YM, Cao Y, Xiao Y, Li W, Yu J, Zhao BL, Zhong MH, Yan HM. Flagellin-PAc Fusion Protein Inhibits Progression of Established Caries. J Dent Res 2015; 94:955-60. [PMID: 25883108 DOI: 10.1177/0022034515582224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dental caries remains one of the most common infectious diseases of humankind, which develops slowly throughout life, affecting children, adolescents, and adults. A vaccine against caries is urgently needed. We previously developed recombinant flagellin as a mucosal adjuvant for anti-Streptococcus mutans vaccines by nasal immunization. Furthermore, we demonstrated a fusion protein strategy that combined flagellin and the target surface adhesion protein (PAc) in a single construct. This construct enhanced specific IgA responses in oral fluids and provided improved prophylactic protection against caries. In the present study, we observed prolonged progression of dental caries in rats after S. mutans Ingbritt challenge. In addition, we observed a therapeutic effect of the flagellin-PAc fusion protein (KF-rPAc) against dental caries as a mucosal vaccine with a new immunization protocol. The present study demonstrated that KF-rPAc by nasal immunization can promote PAc-specific systemic and mucosal antibody responses and inhibit dental caries progression efficiently after the implant of S. mutans into the oral cavity of the rats. The rats immunized with KF-rPAc exhibited 53.9% caries reduction compared with the sham-immunized rats. Our data support the concept of administration of KF-rPAc to humans after infection and even caries that has begun to alleviate caries progression. In conclusion, our study demonstrated that KF-rPAc could be used as an anticaries therapeutic mucosal vaccine.
Collapse
Affiliation(s)
- R Bao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan, Hubei, China
| | - J Y Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Y Sun
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - D H Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Y Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Y M Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Y Cao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Y Xiao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - W Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - J Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - B L Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - M H Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - H M Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
12
|
Donovan TE, Marzola R, Becker W, Cagna DR, Eichmiller F, McKee JR, Metz JE, Albouy JP. Annual review of selected scientific literature: report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2014; 112:1038-87. [PMID: 25443419 DOI: 10.1016/j.prosdent.2014.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Terence E Donovan
- Chair, Committee on Scientific Investigation, American Academy of Restorative Dentistry (AARD); Professor and Section Head for Biomaterials, Department of Operative Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | | | - William Becker
- Clinical Professor, Advanced Education in Prosthodontics, Herman Ostrow School of Dentistry, University of Southern California; private practice, Tucson, Ariz
| | - David R Cagna
- Associate Dean, Professor and Director, Advanced Prosthodontics, University of Tennessee, Health Science Center, College of Dentistry, Memphis, Tenn
| | | | | | | | | |
Collapse
|
13
|
Tang H. Immune selection, senescence and adjuvant. SCIENCE CHINA. LIFE SCIENCES 2013; 56:391. [PMID: 23633069 DOI: 10.1007/s11427-013-4481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Indexed: 06/02/2023]
|