1
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Yang T, Li J, Cheng X, Lu Q, Farooq Z, Fu Y, Lv S, Nan W, Yu B, Duan J, Zhang Y, Fu Y, Jiang H, McCormick PJ, Li Y, Zhang J. Structural analysis of the human C5a-C5aR1 complex using cryo-electron microscopy. J Struct Biol 2024; 216:108117. [PMID: 39153560 DOI: 10.1016/j.jsb.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The complement system is a complex network of proteins that plays a crucial role in the innate immune response. One important component of this system is the C5a-C5aR1 complex, which is critical in the recruitment and activation of immune cells. In-depth investigation of the activation mechanism as well as biased signaling of the C5a-C5aR1 system will facilitate the elucidation of C5a-mediated pathophysiology. In this study, we determined the structure of C5a-C5aR1-Gi complex at a high resolution of 3 Å using cryo-electron microscopy (Cryo-EM). Our results revealed the binding site of C5a, which consists of a polar recognition region on the extracellular side and an amphipathic pocket within the transmembrane domain. Furthermore, we found that C5a binding induces conformational changes of C5aR1, which subsequently leads to the activation of G protein signaling pathways. Notably, a key residue (M265) located on transmembrane helix 6 (TM6) was identified to play a crucial role in regulating the recruitment of β-arrestin driven by C5a. This study provides more information about the structure and function of the human C5a-C5aR1 complex, which is essential for the proper functioning of the complement system. The findings of this study can also provide a foundation for the design of new pharmaceuticals targeting this receptor with bias or specificity.
Collapse
Affiliation(s)
- Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jian Li
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qiuyuan Lu
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zara Farooq
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Sijia Lv
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Boming Yu
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd, Shenzhen, Guangdong 518118, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, UK.
| | - Yanyan Li
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemical Biology, School of Life Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
3
|
Kang QM, Wang J, Chen SM, Song SR, Yu SC. Glioma-associated mesenchymal stem cells. Brain 2024; 147:755-765. [PMID: 37850820 DOI: 10.1093/brain/awad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have revealed that glioma-associated mesenchymal stem cells play instrumental roles in tumorigenesis and tumour progression and cannot be ignored as a cellular component of the glioma microenvironment. Nevertheless, the origin of these cells and their roles are poorly understood. The only relevant studies have shown that glioma-associated mesenchymal stem cells play a large role in promoting tumour proliferation, invasion and angiogenesis. This review provides a comprehensive summary of their discovery and definition, origin, differences from other tissue-derived mesenchymal stem cells, spatial distribution, functions and prognostic and therapeutic opportunities to deepen the understanding of these cells and provide new insight into the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Mei Kang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Man Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Si-Rong Song
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| |
Collapse
|
4
|
Zhou S, Wang Z, Gao L, Chen M, Duan Y, Zhou P, Liu Z, Wu C, Zhang J, Zhu Q. C5a/C5aR1 axis as a key driver promotes epithelial-to-mesenchymal transition in airway epithelial cells in silica nanoparticles-induced pulmonary fibrosis. Int Immunopharmacol 2023; 125:111112. [PMID: 37948857 DOI: 10.1016/j.intimp.2023.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.
Collapse
Affiliation(s)
- Sifan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhoujian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Muyue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuansheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhibing Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
5
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
6
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
7
|
Shu J, Ren Y, Tan W, Wei W, Zhang L, Chang J. Identification of potential drug targets for vascular dementia and carotid plaques by analyzing underlying molecular signatures shared by them. Front Aging Neurosci 2022; 14:967146. [PMID: 36262886 PMCID: PMC9574221 DOI: 10.3389/fnagi.2022.967146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/05/2022] [Indexed: 11/14/2022] Open
Abstract
Background Vascular dementia (VaD) and carotid atherosclerotic plaques are common in the elderly population, conferring a heavy burden on families and society. Accumulating evidence indicates carotid atherosclerotic plaques to be a risk factor for VaD. However, the underlying mechanisms for this association are mainly unknown. Materials and methods We analyzed temporal cortex gene expression data of the GSE122063 dataset and gene expression data of the GSE163154 dataset to identify commonly differentially expressed genes (DEGs). Then we performed functional enrichment analysis, immune cell infiltration and evaluation, correlation analysis between differentially expressed immune-related genes (DEIRGs) and immune cells, receiver operating characteristic (ROC) analysis, and drug-gene analysis. Results We identified 41 overlapped DEGs between the VaD and carotid atherosclerosis plaque datasets. Functional enrichment analyses revealed that these overlapped DEGs were mainly enriched in inflammatory and immune-related processes. Immunocyte infiltration and evaluation results showed that M0 macrophages, M2 macrophages, and T cells gamma delta had a dominant abundance in carotid atherosclerosis plaque samples, and M0 macrophages showed a significantly different infiltration percentage between the early and advanced stage plaques group. Resting CD4 memory T cells, M2 macrophages, and naive B cells were the top three highest infiltrating fractions in VaD. Furthermore, B cells and NK cells showed a different infiltration percentage between VaD and matched controls. We identified 12 DEIRGs, and the result of correlation analysis revealed that these DEIRGs were closely related to differentially expressed immune cells. We identified five key DEIRGs based on ROC analysis. The drug-gene interaction analysis showed that four drugs (avacopan, CCX354, BMS-817399, and ASK-8007) could be potential drugs for VaD and carotid atherosclerotic plaques treatment. Conclusion Collectively, these findings indicated that inflammatory and immune-related processes be a crucial common pathophysiological mechanism shared by VaD and carotid plaques. This study might provide new insights into common molecular mechanisms between VaD and carotid plaques and potential targets for the treatment.
Collapse
Affiliation(s)
- Jun Shu
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wen Tan
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- *Correspondence: Wenshi Wei,
| | - Li Zhang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Li Zhang,
| | - Jie Chang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Jie Chang,
| |
Collapse
|
8
|
Yang Z, Simovic MO, Liu B, Burgess MB, Cap AP, DalleLucca JJ, Li Y. Indices of complement activation and coagulation changes in trauma patients. Trauma Surg Acute Care Open 2022; 7:e000927. [PMID: 36117727 PMCID: PMC9476135 DOI: 10.1136/tsaco-2022-000927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Early complementopathy and coagulopathy are shown often after trauma. However, the prevalence of any interplay between complement cascade (ComC) and coagulation cascade (CoaC) after trauma remains unclear. This study intended to explore whether complement-coagulation crosstalk exists, which may provide a reliable guide to clinical implications in trauma patients. Methods This single-center cohort study of trauma patients enrolled 100 patients along with 20 healthy volunteers. Blood samples from patients were collected at admission, 45, 90, 135 minutes, and 18 hours after admission. Demographic characteristics were recorded, blood levels of ComC and CoaC factors, and inflammatory cytokines were measured by ELISA, clot-based assays, or luminex multiplex assay, and partial thromboplastin (PT) and partial thromboplastin time (PTT) were assessed using a Behring blood coagulation system. Results Compared with the healthy controls, plasma levels of complement factors (C5b-9 and Bb) and 11 tested inflammatory cytokines increased in moderately and severely injured patients as early as 45 minutes after admission and sustained higher levels up to 18 hours after admission. C5b-9 correlated positively to patients’ hospital stay. In parallel, the consumption of coagulation factors I, II, X, and XIII was shown throughout the first 18 hours after admission in moderately and severely injured patients, whereas PT, PTT, D-dimer, factor VII, and factor VIII values significantly increased from the admission to 135 minutes in moderately and severely injured patients. Along with an inverse correlation between plasma Bb, factors I and II, a positive correlation between C5b-9, Bb, D-dimer, PT, and PTT was evident. Conclusions This study demonstrates trauma-induced early activation of plasma cascades including ComC, CoaC, and fibrinolytic cascade, and their correlation between plasma cascades in severe trauma patients. Our study suggests that the simultaneous modulation of plasma cascades might benefit clinical outcomes for trauma patients. Level of evidence Prospective study, level III.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Milomir O Simovic
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Bin Liu
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Matthew B Burgess
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Andrew P Cap
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | | | - Yansong Li
- Department of Organ Function Support, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Trauma Research, UTHSCSA, San Antonio, Texas, USA.,Geneva Foundation, Tacoma, Washington, USA
| |
Collapse
|
9
|
Bhalla SP, Shaju AM, Figueredo CMDS, Miranda LA. Increased Levels of C5a in Gingival Crevicular Fluid and Saliva of Patients with Periodontal Disease. Pathogens 2022; 11:pathogens11090983. [PMID: 36145415 PMCID: PMC9503606 DOI: 10.3390/pathogens11090983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
C5a is a powerful complement effector molecule that is considered to be an important proinflammatory mediator in several systemic chronic inflammatory diseases. However, its levels in periodontal diseases are yet to be assessed. We aimed to analyse the secretion of C5a in gingival crevicular fluid (GCF) and saliva of patients with periodontal disease. Twenty-eight patients diagnosed with stage 3–4 periodontitis and 16 periodontally healthy subjects participated in this study. GCF was collected from sites with the deepest probing depth of each patient, and volume was measured using a Periotron 8000®. One mL of unstimulated saliva was also collected. Samples were analysed using a commercially available ELISA kit. The data were analysed using the Mann–Whitney U test, Pearson’s bivariate testing, and receiver operating characteristic curve. C5a was present in GCF from patients with periodontitis (1.06 ± 0.25 ng/mL) whilst it was undetected in controls. Saliva concentration was also significantly higher in periodontitis (1.82 ± 2.31 ng/mL) than controls (0.60 ± 0.72 ng/mL, p = 0.006). C5a levels were more pronounced in periodontitis in both oral fluids assessed by the present pilot study. These results suggest that the more pronounced levels of C5a in oral fluids from periodontitis patients indicate a potential role of this molecule in this disease pathogenesis, deserving to be better explored in subsequent studies.
Collapse
Affiliation(s)
| | - Ann Maria Shaju
- Discipline of Periodontics, UWA Dental School, Nedlands, WA 6009, Australia
| | - Carlos Marcelo da Silva Figueredo
- School of Medicine and Dentistry, Griffith University, Nathan, QLD 4111, Australia
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 141 04 Huddinge, Sweden
| | | |
Collapse
|
10
|
Bioinformatics Analysis of Competing Endogenous RNA Network and Immune Infiltration in Atrial Fibrillation. Genet Res (Camb) 2022; 2022:1415140. [PMID: 35919038 PMCID: PMC9308555 DOI: 10.1155/2022/1415140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background There is still no clear understanding of the pathogenesis of atrial fibrillation (AF). For this purpose, we used integrated analysis to uncover immune infiltration characteristics and investigated their relationship with competing endogenous RNA (ceRNA) network in AF. Methods Three AF mRNA data sets (GSE14975, GSE79768, and GSE41177) were integrated using the SVA method from Gene Expression Omnibus (GEO). Together with AF circRNA data set (GSE129409) and miRNA data set (GSE70887) from GEO database, we built a ceRNA network. Then hub genes were screened by the Cytoscape plug-in cytoHubba from a protein-protein interaction (PPI) network. As well, CIBERSORT was employed to investigate immune infiltration, followed by Pearson correlation coefficients to unravel the correlation between AF-related infiltrating immune cells and hub genes. Ulteriorly, circRNA-miRNA-mRNA regulatory axises that could be immunologically related to AF were obtained. Results Ten hub genes were identified from the constructing PPI network. The immune infiltration analysis revealed that the number of monocytes and neutrophils was higher, as well as the number of dendritic cells activated and T cells regulatory (Tregs) was lower in AF. Seven hub genes (C5AR1, CXCR4, HCK, LAPTM5, MPEG1, TLR8, and TNFSF13B) were associated with those 4 immune cells (P < 0.05). We found that the circ_0005299–miR-1246–C5AR1 and circRNA_0079284-miR-623-HCK/CXCR4 regulatory axises may be associated with the immune mechanism of AF. Conclusion The findings of our study provide insights into immuno-related ceRNA networks as potential molecular regulators of AF progression.
Collapse
|
11
|
Jenkins AJ, Grant MB, Busik JV. Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies. Diabetologia 2022; 65:587-603. [PMID: 35149880 PMCID: PMC9377536 DOI: 10.1007/s00125-022-05655-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The metabolically active retina obtains essential lipids by endogenous biosynthesis and from the systemic circulation. Clinical studies provide limited and sometimes conflicting evidence as to the relationships between circulating lipid levels and the development and progression of diabetic retinopathy in people with diabetes. Cardiovascular-system-focused clinical trials that also evaluated some retinal outcomes demonstrate the potential protective power of lipid-lowering therapies in diabetic retinopathy and some trials with ocular primary endpoints are in progress. Although triacylglycerol-lowering therapies with fibrates afforded some protection against diabetic retinopathy, the effect was independent of changes in traditional blood lipid classes. While systemic LDL-cholesterol lowering with statins did not afford protection against diabetic retinopathy in most clinical trials, and none of the trials focused on retinopathy as the main outcome, data from very large database studies suggest the possible effectiveness of statins. Potential challenges in these studies are discussed, including lipid-independent effects of fibrates and statins, modified lipoproteins and retinal-specific effects of lipid-lowering drugs. Dysregulation of retinal-specific cholesterol metabolism leading to retinal cholesterol accumulation and potential formation of cholesterol crystals are also addressed.
Collapse
Affiliation(s)
- Alicia J Jenkins
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Maria B Grant
- Department of Ophthalmology and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Wei D, Li R, Si T, He H, Wu W. Screening and bioinformatics analysis of key biomarkers in acute myocardial infarction. Pteridines 2021. [DOI: 10.1515/pteridines-2020-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Acute myocardial infarction (AMI) is the most severe manifestation of coronary artery disease. Considerable efforts have been made to elucidate its etiology and pathology, but the genetic factors that play a decisive role in the occurrence of AMI are still unclear. To determine the molecular mechanism of the occurrence and development of AMI, four microarray datasets, namely, GSE29111, GSE48060, GSE66360, and GSE97320, were downloaded from the Gene Expression Omnibus (GEO) database. We analyzed the four GEO datasets to obtain the differential expression genes (DEGs) of patients with AMI and patients with non-AMI and then performed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-protein interaction (PPI) network analysis. A total of 41 DEGs were identified, including 39 upregulated genes and 2 downregulated genes. The enriched functions and pathways of the DEGs included the inflammatory response, neutrophil chemotaxis, immune response, extracellular space, positive regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor activity, response to lipopolysaccharide, receptor for advanced glycation end products (RAGE) receptor binding, innate immune response, defense response to bacterium, and receptor activity. The cytoHubba plug-in in Cytoscape was used to select the most significant hub gene from the PPI network. Ten hub genes were identified, and GO enrichment analysis revealed that these genes were mainly enriched in inflammatory response, neutrophil chemotaxis, immune response, RAGE receptor binding, and extracellular region. In conclusion, this study integrated four datasets and used bioinformatics methods to analyze the gene chips of AMI samples and control samples and identified DEGs that may be involved in the occurrence and development of AMI. The study provides reliable molecular biomarkers for AMI screening, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Dongmei Wei
- Department of Cardiovasology, Liuzhou Traditional Chinese Medical Hospital , Liuzhou , Guangxi Province, 545001 , People’s Republic of China
| | - Rui Li
- Guangzhou University of Chinese Medicine , Guangzhou , Guangdong Province, 510405 , People’s Republic of China
| | - Tao Si
- Guangzhou University of Chinese Medicine , Guangzhou , Guangdong Province, 510405 , People’s Republic of China
| | - Hankang He
- Department of Cardiovasology, Liuzhou Traditional Chinese Medical Hospital , Liuzhou , Guangxi Province, 545001 , People’s Republic of China
| | - Wei Wu
- Guangzhou University of Chinese Medicine , Guangzhou , Guangdong Province, 510405 , People’s Republic of China
| |
Collapse
|
13
|
Zhu F, Zuo L, Hu R, Wang J, Yang Z, Qi X, Feng L. A ten-genes-based diagnostic signature for atherosclerosis. BMC Cardiovasc Disord 2021; 21:513. [PMID: 34688276 PMCID: PMC8540101 DOI: 10.1186/s12872-021-02323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/12/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Atherosclerosis is the leading cause of cardiovascular disease with a high mortality worldwide. Understanding the atherosclerosis pathogenesis and identification of efficient diagnostic signatures remain major problems of modern medicine. This study aims to screen the potential diagnostic genes for atherosclerosis. METHODS We downloaded the gene chip data of 135 peripheral blood samples, including 57 samples with atherosclerosis and 78 healthy subjects from GEO database (Accession Number: GSE20129). The weighted gene co-expression network analysis was applied to identify atherosclerosis-related genes. Functional enrichment analysis was conducted by using the clusterProfiler R package. The interaction pairs of proteins encoded by atherosclerosis-related genes were screened using STRING database, and the interaction network was further optimized with the cytoHubba plug-in of Cytoscape software. RESULTS The logistic regression diagnostic model was constructed to predict normal and atherosclerosis samples. A gene module which included 532 genes related to the occurrence of atherosclerosis were screened. Functional enrichment analysis basing on the 532 genes identified 235 significantly enriched GO terms and 44 significantly enriched KEGG pathways. The top 50 hub genes of the protein-protein interaction network were identified. The final logistic regression diagnostic model was established by the optimal 10 key genes, which could distinguish atherosclerosis samples from normal samples. CONCLUSIONS A predictive model based on 10 potential atherosclerosis-related genes was obtained, which should shed light on the diagnostic research of atherosclerosis.
Collapse
Affiliation(s)
- Feng Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou City, Hebei Province, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Lili Zuo
- Department of Neonatal, ZiBo Maternal and Child Health Hospital, Zibo City, Shandong Province, China
| | - Rui Hu
- Center for Drug Monitoring and Evaluation Department, Center for Drug Monitoring and Evaluation in Zhangjiakou, Zhangjiakou City, Hebei Province, China
| | - Jin Wang
- Department of Cardiovascular Disease, ZiBo Hospital of Traditional Chinese Medicine, Zibo City, Shandong Province, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
14
|
Cross-Talk of Atherosclerosis and Ischemic Stroke: Dramatic Role of Neutrophils. ARCHIVES OF NEUROSCIENCE 2021. [DOI: 10.5812/ans.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Current investigations illustrate the increasing prevalence of atherosclerosis (AS) through the aggravating role of inappropriate lifestyle patterns. Atherosclerosis is the cause of important vascular-related diseases such as ischemic stroke (IS). Understanding AS pathophysiology can help reduce the incidence of AS-mediated diseases like ischemic stroke. Evidence Acquisition: For this narrative review article, we used the five mega databases of PubMed, Google Scholar, Scopus, Springer, and Science Direct. We searched from 2010 Jan to 2020 Dec and based on keywords and inclusion criteria, 77 articles were enrolled. Results: Based on prior articles on atherosclerosis and ischemic stroke pathophysiology, local and systemic inflammation is a vigorous factor in both diseasesIndeed, the fundamental inflammatory pathway involved atherosclerosis, and ischemic stroke is associated with the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-kappa B (TLR4/ Myd88/ NF-κB) cascade. The functional paw of these intricate mechanisms are pro-inflammatory mediators, such as interleukin-1 beta (IL-1β), tumor necrosis factor (TNF-α), and interleukin-18 (IL-18) incite inflammation. Besides, the essential structures termed inflammasomes (multi proteins components), and multiplicity of immune and non-immune cells (i.e., neutrophils, monocytes, platelets, and macrophages) are beneficial in the induction of inflammatory microenvironment. Conclusions: Neutrophils could be the most effective cells in the inflammation-based mechanism in IS and AS. It is clarified that neutrophils with the recruitment of own vesicles and granules can afford to amplify inflammatory conditions and be a key cell in AS and IS cross-talk. Therefore, utilizing methods to control neutrophils-mediated mechanisms could be an effective method for the prevention of AS and IS.
Collapse
|
15
|
Jung KH, Son MK, Yan HH, Fang Z, Kim J, Kim SJ, Park JH, Lee JE, Yoon Y, Seo MS, Han BS, Ko S, Suh YJ, Lim JH, Lee D, Teo Z, Wee JWK, Tan NS, Hong S. ANGPTL4 exacerbates pancreatitis by augmenting acinar cell injury through upregulation of C5a. EMBO Mol Med 2020; 12:e11222. [PMID: 32638512 PMCID: PMC7411571 DOI: 10.15252/emmm.201911222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
Pancreatitis is the inflammation of the pancreas. However, little is known about the genes associated with pancreatitis severity. Our microarray analysis of pancreatic tissues from mild and severe acute pancreatitis mice models identified angiopoietin-like 4 (ANGPTL4) as one of the most significantly upregulated genes. Clinically, ANGPTL4 expression was also increased in the serum and pancreatic tissues of pancreatitis patients. The deficiency in ANGPTL4 in mice, either by gene deletion or neutralizing antibody, mitigated pancreatitis-associated pathological outcomes. Conversely, exogenous ANGPTL4 exacerbated pancreatic injury with elevated cytokine levels and apoptotic cell death. High ANGPTL4 enhanced macrophage activation and infiltration into the pancreas, which increased complement component 5a (C5a) level through PI3K/AKT signaling. The activation of the C5a receptor led to hypercytokinemia that accelerated acinar cell damage and furthered pancreatitis. Indeed, C5a neutralizing antibody decreased inflammatory response in LPS-activated macrophages and alleviated pancreatitis severity. In agreement, there was a significant positive correlation between C5a and ANGPTL4 levels in pancreatitis patients. Taken together, our study suggests that targeting ANGPTL4 is a potential strategy for the treatment of pancreatitis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Mi Kwon Son
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Hong Hua Yan
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Zhenghuan Fang
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Juyoung Kim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Soo Jung Kim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Jung Hee Park
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Ji Eun Lee
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Young‐Chan Yoon
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Myeong Seong Seo
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Beom Seok Han
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Soyeon Ko
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Young Ju Suh
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Joo Han Lim
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Don‐Haeng Lee
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| | - Ziqiang Teo
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
| | - Jonathan Wei Kiat Wee
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
| | - Nguan Soon Tan
- School of Biological ScienceCollege of ScienceNanyang Technological University SingaporeSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingapore CitySingapore
| | - Soon‐Sun Hong
- Department of MedicineCollege of MedicineInha UniversityIncheonKorea
| |
Collapse
|
16
|
Complement Activation in Association with Markers of Neutrophil Extracellular Traps and Acute Myocardial Infarction in Stable Coronary Artery Disease. Mediators Inflamm 2020; 2020:5080743. [PMID: 32308555 PMCID: PMC7136779 DOI: 10.1155/2020/5080743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Complement activation and neutrophil extracellular traps (NETs) have both been suggested to drive atherosclerotic plaque progression. Although experimental studies suggest interplay between these two innate immunity components, the relevance in patients with coronary artery disease (CAD) is unclear. The aim of this study was to assess associations between complement activation and NETs in patients with stable CAD and examine the role of complement activation on clinical outcome. Blood samples from a cohort of patients with angiographically verified stable CAD (n = 1001) were analyzed by ELISA for the terminal complement complex (TCC) and by relative quantification for gene expression of the C5a receptor 1 (C5aR1) as markers of complement activation. As markers of NETs, dsDNA was analyzed by fluorescent nucleic acid stain and myeloperoxidase-DNA (MPO-DNA) by ELISA. Clinical outcome was defined as unstable angina, nonhemorrhagic stroke, acute myocardial infarction (MI), or death (n = 106, whereof 36 MI). Levels of TCC and C5aR1 were not significantly correlated to dsDNA (TCC: r = −0.045, p = 0.153; C5aR1: r = −0.060, p = 0.434) or MPO-DNA (TCC: r = 0.026, p = 0.414; C5aR1: r = 0.123, p = 0.107). When dividing TCC and C5aR1 levels into quartiles (Q), levels of MPO-DNA differed significantly across quartiles (TCC: p = 0.008, C5aR1: 0.049), while dsDNA did not (TCC: p = 0.181, C5aR1: p = 0.771). Patients with TCC levels in Q4 had significantly higher levels of MPO-DNA than Q1-3 (p = 0.019), and C5aR1 levels in Q3-4 had significantly higher levels of MPO-DNA than Q1-2 (p = 0.046). TCC levels did not differ between patients experiencing a clinical endpoint or not, but high levels were associated with increased risk of acute MI (OR. 1.97, 95% CI: 0.99-3.90, p = 0.053) during two-year follow up, also when adjusted for relevant covariates. In conclusion, TCC and C5aR1 were moderately associated with the NET marker MPO-DNA, and TCC levels were related to the risk of future MI in this cohort of patients with stable CAD.
Collapse
|
17
|
A Bifunctional Adsorber Particle for the Removal of Hydrophobic Uremic Toxins from Whole Blood of Renal Failure Patients. Toxins (Basel) 2019; 11:toxins11070389. [PMID: 31277311 PMCID: PMC6669679 DOI: 10.3390/toxins11070389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023] Open
Abstract
Hydrophobic uremic toxins accumulate in patients with chronic kidney disease, contributing to a highly increased cardiovascular risk. The clearance of these uremic toxins using current hemodialysis techniques is limited due to their hydrophobicity and their high binding affinity to plasma proteins. Adsorber techniques may be an appropriate alternative to increase hydrophobic uremic toxin removal. We developed an extracorporeal, whole-blood bifunctional adsorber particle consisting of a porous, activated charcoal core with a hydrophilic polyvinylpyrrolidone surface coating. The adsorption capacity was quantified using analytical chromatography after perfusion of the particles with an albumin solution or blood, each containing mixtures of hydrophobic uremic toxins. A time-dependent increase in hydrophobic uremic toxin adsorption was depicted and all toxins showed a high binding affinity to the adsorber particles. Further, the particle showed a sufficient hemocompatibility without significant effects on complement component 5a, thrombin-antithrombin III complex, or thrombocyte concentration in blood in vitro, although leukocyte counts were slightly reduced. In conclusion, the bifunctional adsorber particle with cross-linked polyvinylpyrrolidone coating showed a high adsorption capacity without adverse effects on hemocompatibility in vitro. Thus, it may be an interesting candidate for further in vivo studies with the aim to increase the efficiency of conventional dialysis techniques.
Collapse
|
18
|
Orrem HL, Nilsson PH, Pischke SE, Kleveland O, Yndestad A, Ekholt K, Damås JK, Espevik T, Bendz B, Halvorsen B, Gregersen I, Wiseth R, Andersen GØ, Ueland T, Gullestad L, Aukrust P, Barratt-Due A, Mollnes TE. IL-6 Receptor Inhibition by Tocilizumab Attenuated Expression of C5a Receptor 1 and 2 in Non-ST-Elevation Myocardial Infarction. Front Immunol 2018; 9:2035. [PMID: 30258440 PMCID: PMC6143659 DOI: 10.3389/fimmu.2018.02035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Elevated interleukin-6 (IL-6) and complement activation are associated with detrimental effects of inflammation in coronary artery disease (CAD). The complement anaphylatoxins C5a and C3a interact with their receptors; the highly inflammatory C5aR1, and the C5aR2 and C3aR. We evaluated the effect of the IL-6 receptor (IL-6R)-antagonist tocilizumab on the expression of the anaphylatoxin receptors in whole blood from non-ST-elevation myocardial infarction (NSTEMI) patients. Separately, anaphylatoxin receptor expression in peripheral blood mononuclear cells (PBMC) from patients with different entities of CAD was investigated. Materials and Methods: NSTEMI patients were randomized to one dose of tocilizumab (n = 28) or placebo (n = 32) and observed for 6 months. Whole blood samples drawn at inclusion, at day 2, 3 and after 6 months were used for mRNA isolation. Plasma was prepared for analysis of complement activation measured as sC5b-9 by ELISA. Furthermore, patients with different CAD entities comprising stable angina pectoris (SAP, n = 22), non-ST-elevation acute coronary syndrome (NSTE-ACS, n = 21) and ST-elevation myocardial infarction (STEMI, n = 20) were included. PBMC was isolated from blood samples obtained at admission to hospital and mRNA isolated. Anaphylatoxin-receptor-expression was analyzed with qPCR using mRNA from whole blood and PBMC, respectively. Results: Our main findings were (i) Tocilizumab decreased C5aR1 and C5aR2 mRNA expression significantly (p < 0.001) and substantially (>50%) at day 2 and 3, whereas C3aR expression was unaffected. (ii) Tocilizumab did not affect complement activation. (iii) In analyzes of different CAD entities, C5aR1 expression was significantly increased in all CAD subgroups compared to controls with the highest level in the STEMI patients (p < 0.001). For C5aR2 and C3aR the expression compared to controls were more moderate with increased expression of C5aR2 in the STEMI group (p < 0.05) and C3aR in the NSTE-ACS group (p < 0.05). Conclusion: Expression of C5aR1 and C5aR2 in whole blood was significantly attenuated by IL-6R-inhibition in NSTEMI patients. These receptors were significantly upregulated in PBMC CAD patients with particularly high levels of C5aR1 in STEMI patients.
Collapse
Affiliation(s)
- Hilde L Orrem
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway.,Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway.,KG Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway.,Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ola Kleveland
- Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Yndestad
- KG Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Karin Ekholt
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway
| | - Jan K Damås
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Bendz
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Bente Halvorsen
- KG Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rune Wiseth
- Clinic of Cardiology, St. Olavs Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Ø Andersen
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway.,Center for Clinical Heart Research, Oslo University Hospital, Ullevål, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Thor Ueland
- KG Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Lars Gullestad
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- KG Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway.,Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,University of Oslo, Oslo, Norway.,KG Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway
| |
Collapse
|
19
|
Guo L, Zheng L, Guo X, Chang Y, Zhou X, Sun Y. Single-Nucleotide Polymorphism rs17611 of Complement Component 5 Shows Association with Ischemic Stroke in Northeast Chinese Population. Genet Test Mol Biomarkers 2016; 20:766-770. [PMID: 27768391 DOI: 10.1089/gtmb.2016.0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Complement component 5 (C5) has been described to play an important role in the development and progression of atherosclerosis and cardiovascular disease. Our aim was to determine whether genetic variation of C5 was associated with ischemic stroke (IS) in northeast Chinese population. METHODS We used a case-control study involving 386 IS patients and 386 non-IS controls from a rural population and determined the genotypes of five polymorphisms (rs12237774, rs17611, rs4837805, rs7026551, and rs1017119) of C5 gene by Snapshot single-nucleotide polymorphism genotyping assays to assess any links with IS. RESULTS In univariate analysis, rs17611 was significantly associated with IS in the additive model, the dominant model, and recessive model (additive p 0.031, dominant p 0.034, and recessive p 0.027). After adjustment for Binary Logistic Regression, rs17611 polymorphism was still significant in three models (adjusted odds ratio (OR) = 1.306, 95% confidence interval (CI) = 1.069-1.595, p-value = 0.009 in an additive model; OR = 1.378, 95% CI = 1.024-1.856, p-value = 0.035 in a dominant model; and OR = 1.511, 95% CI = 1.048-2.18, p-value = 0.027 in a recessive model). CONCLUSION In this sample of patients, genetic variation of rs17611 in C5 is associated with higher prevalence of IS.
Collapse
Affiliation(s)
- Liang Guo
- 1 Department of Cardiology, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Liqiang Zheng
- 2 Department of Clinical Epidemiology, Shengjing Hospital of China Medical University , Shenyang, People's Republic of China
| | - Xiaofan Guo
- 1 Department of Cardiology, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Ye Chang
- 1 Department of Cardiology, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Xinghu Zhou
- 1 Department of Cardiology, The First Hospital of China Medical University , Shenyang, People's Republic of China
| | - Yingxian Sun
- 1 Department of Cardiology, The First Hospital of China Medical University , Shenyang, People's Republic of China
| |
Collapse
|
20
|
Sun Y, Liu Y, Chen K. Roles and mechanisms of ginsenoside in cardiovascular diseases: progress and perspectives. SCIENCE CHINA-LIFE SCIENCES 2016; 59:292-8. [DOI: 10.1007/s11427-016-5007-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022]
|
21
|
Vlaicu SI, Tatomir A, Rus V, Mekala AP, Mircea PA, Niculescu F, Rus H. The role of complement activation in atherogenesis: the first 40 years. Immunol Res 2015; 64:1-13. [DOI: 10.1007/s12026-015-8669-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|