1
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhang P, Yue K, Liu X, Yan X, Yang Z, Duan J, Xia C, Xu X, Zhang M, Liang L, Wang L, Han H. Endothelial Notch activation promotes neutrophil transmigration via downregulating endomucin to aggravate hepatic ischemia/reperfusion injury. SCIENCE CHINA-LIFE SCIENCES 2020; 63:375-387. [PMID: 32048161 DOI: 10.1007/s11427-019-1596-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory leukocytes infiltration is orchestrated by mechanisms involving chemokines, selectins, addressins and other adhesion molecules derived from endothelial cells (ECs), but how they respond to inflammatory cues and coordinate leukocyte transmigration remain elusive. In this study, using hepatic ischemia/reperfusion injury (HIRI) as a model, we identified that endothelial Notch activation was rapidly and dynamically induced in liver sinusoidal endothelial cells (LSECs) in acute inflammation. In mice with EC-specific Notch activation (NICeCA), HIRI induced exacerbated liver damage. Consistently, endothelial Notch activation enhanced neutrophil infiltration and tumor necrosis factor (TNF)-α expression in HIRI. Transcriptome analysis and further qRT-PCR as well as immunofluorescence indicated that endomucin (EMCN), a negative regulator of leukocyte adhesion, was downregulated in LSECs from NICeCA mice. EMCN was downregulated during HIRI in wild-type mice and in vitro cultured ECs insulted by hypoxia/re-oxygenation injury. Notch activation in ECs led to increased neutrophil adhesion and transendothelial migration, which was abrogated by EMCN overexpression in vitro. In mice deficient of RBPj, the integrative transcription factor of canonical Notch signaling, although overwhelming sinusoidal malformation aggravated HIRI, the expression of EMCN was upregulated; and pharmaceutical Notch blockade in vitro also upregulated EMCN and inhibited transendothelial migration of neutrophils. The Notch activation-exaggerated HIRI was compromised by blocking LFA-1, which mediated leukocyte adherence by associating with EMCN. Therefore, endothelial Notch signaling controls neutrophil transmigration via EMCN to modulate acute inflammation in HIRI.
Collapse
Affiliation(s)
- Peiran Zhang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Kangyi Yue
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinli Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Congcong Xia
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinyuan Xu
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Mei Zhang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China.,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China. .,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China. .,Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Ran T, Zhang Y, Diao N, Geng S, Chen K, Lee C, Li L. Enhanced Neutrophil Immune Homeostasis Due to Deletion of PHLPP. Front Immunol 2019; 10:2127. [PMID: 31555304 PMCID: PMC6742689 DOI: 10.3389/fimmu.2019.02127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are known to adopt dynamic and distinct functional phenotypes involved in the modulation of inflammation and immune homeostasis. However, inter-cellular signaling mechanisms that govern neutrophil polarization dynamics are not well understood. Employing a novel model of PHLPP deficient mice, we examined how neutrophils deficient in PHLPP may uniquely modulate immune defense and the host response during acute colitis. We found that PHLPP-/- mice were protected from dextran sodium sulfate (DSS)-induced septic colitis characterized by minimal body weight-loss, alleviated colon tissue destruction and reduced clinical symptoms. PHLPP-/- neutrophils have enhanced immune homeostasis as compared to WT neutrophils, reflected in enhanced migratory capacity toward chemoattractants, and reduced expression of inflammatory mediators due to elevated phosphorylation of AKT, STAT1, and ERK. Further, adoptive transfer of PHLPP deficient neutrophils to WT mice is sufficient to potently alleviate the severity of DSS-induced colitis. Our data reveal that PHLPP deficient neutrophils can be uniquely reprogrammed to a state conducive to host inflammation resolution. As a consequence, PHLPP-/- neutrophils can effectively transfer immune homeostasis in mice subjected to acute colitis. Our findings hold significant and novel insights into the mechanisms by which neutrophils can be effectively reprogrammed into a homeostatic state conducive for treating acute injuries such as septic colitis.
Collapse
Affiliation(s)
- Taojing Ran
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Na Diao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Keqiang Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Christina Lee
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Modeling the Bistable Dynamics of the Innate Immune System. Bull Math Biol 2018; 81:256-276. [PMID: 30387078 DOI: 10.1007/s11538-018-0527-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
The size of primary challenge with lipopolysaccharide induces changes in the innate immune cells phenotype between pro-inflammatory and pro-tolerant states when facing a secondary lipopolysaccharide challenge. To determine the molecular mechanisms governing this differential response, we propose a mathematical model for the interaction between three proteins involved in the immune cell decision making: IRAK-1, PI3K, and RelB. The mutual inhibition of IRAK-1 and PI3K in the model leads to bistable dynamics. By using the levels of RelB as indicative of strength of the immune responses, we connect the size of different primary lipopolysaccharide doses to the differential phenotypical outcomes following a secondary challenge. We further predict under what circumstances the primary LPS dose does not influence the response to a secondary challenge. Our results can be used to guide treatments for patients with either autoimmune disease or compromised immune system.
Collapse
|
5
|
Rahtes A, Geng S, Lee C, Li L. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation. J Leukoc Biol 2018; 104:535-541. [PMID: 29688584 DOI: 10.1002/jlb.3ma0218-070r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a host response to infection or damage and is vital for clearing pathogens and host debris. When this resolution fails to occur, chronic inflammation ensues. Chronic inflammation is typically characterized as a low-grade, persistent inflammatory process that can last for months or even years. This differs from acute inflammation, which is typically a fast, robust response to a stimulus followed by resolution with return to homeostasis. Inflammation resolution occurs through a variety of cellular processes and signaling components that act as "brakes" to keep inflammation in check. In cases of chronic inflammation, these "brakes" are often dysfunctional. Due to its prevalent association with chronic diseases, there is growing interest in characterizing these negative regulators and their cellular effects in innate leukocytes. In this review, we aim to describe key cellular and molecular homeostatic regulators of innate leukocytes, with particular attention to the emerging regulatory processes of autophagy and lysosomal fusion during inflammation resolution.
Collapse
Affiliation(s)
- Allison Rahtes
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Christina Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
6
|
Neutrophil programming dynamics and its disease relevance. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1168-1177. [PMID: 28971361 DOI: 10.1007/s11427-017-9145-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022]
Abstract
Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.
Collapse
|
7
|
Kowalski EJA, Li L. Toll-Interacting Protein in Resolving and Non-Resolving Inflammation. Front Immunol 2017; 8:511. [PMID: 28529512 PMCID: PMC5418219 DOI: 10.3389/fimmu.2017.00511] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Innate leukocytes manifest dynamic and distinct inflammatory responses upon challenges with rising dosages of pathogen-associated molecular pattern molecules such as lipopolysaccharide (LPS). To differentiate signal strengths, innate leukocytes may utilize distinct intracellular signaling circuitries modulated by adaptor molecules. Toll-interacting protein (Tollip) is one of the critical adaptor molecules potentially playing key roles in modulating the dynamic adaptation of innate leukocytes to varying dosages of external stimulants. While Tollip may serve as a negative regulator of nuclear factor κ of activated B cells signaling pathway in cells challenged with higher dosages of LPS, it acts as a positive regulator for low-grade chronic inflammation in leukocytes programmed by subclinical low-dosages of LPS. This review aims to discuss recent progress in our understanding of complex innate leukocyte dynamics and its relevance in the pathogenesis of resolving versus non-resolving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Elizabeth J A Kowalski
- Department of Biological Sciences, Virginia Polytechnic State University, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic State University, Blacksburg, VA, USA
| |
Collapse
|
8
|
Innate recognition of microbial-derived signals in immunity and inflammation. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1210-1217. [PMID: 27888386 DOI: 10.1007/s11427-016-0325-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Microbes generate a vast array of different types of conserved structural components called pathogen-associated molecular patterns (PAMPs), which can be recognized by cells of the innate immune system. This recognition of "nonself" signatures occurs through host pattern recognition receptors (PRRs), suggesting that microbial-derived signals are good targets for innate immunity to discriminate between self- and nonself. Such PAMP-PRR interactions trigger multiple but distinct downstream signaling cascades, subsequently leading to production of proinflammatory cytokines and interferons that tailor immune responses to particular microbes. Aberrant PRR signals have been associated with various inflammatory diseases and fine regulation of PRR signaling is essential for avoiding excessive inflammatory immune responses and maintaining immune homeostasis. In this review we summarize the ligands and signal transduction pathways of PRRs and highlight recent progress of the mechanisms involved in microbe-specific innate immune recognition during immune responses and inflammation, which may provide new targets for therapeutic intervention to the inflammatory disorders.
Collapse
|
9
|
Yuan R, Geng S, Li L. Molecular Mechanisms That Underlie the Dynamic Adaptation of Innate Monocyte Memory to Varying Stimulant Strength of TLR Ligands. Front Immunol 2016; 7:497. [PMID: 27891130 PMCID: PMC5103159 DOI: 10.3389/fimmu.2016.00497] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
Abstract
In adaptation to rising stimulant strength, innate monocytes can be dynamically programed to preferentially express either pro- or anti-inflammatory mediators. Such dynamic innate adaptation or programing may bear profound relevance in host health and disease. However, molecular mechanisms that govern innate adaptation to varying strength of stimulants are not well understood. Using lipopolysaccharide (LPS), the model stimulant of toll-like-receptor 4 (TLR4), we reported that the expressions of pro-inflammatory mediators are preferentially sustained in monocytes adapted by lower doses of LPS, and suppressed/tolerized in monocytes adapted by higher doses of LPS. Mechanistically, monocytes adapted by super-low dose LPS exhibited higher levels of transcription factor, interferon regulatory factor 5 (IRF5), and reduced levels of transcriptional modulator B lymphocyte-induced maturation protein-1 (Blimp-1). Intriguingly, the inflammatory monocyte adaptation by super-low dose LPS is dependent upon TRAM/TRIF but not MyD88. Similar to LPS, we also observed biphasic inflammatory adaptation and tolerance in monocytes challenged with varying dosages of TLR7 agonist. In sharp contrast, rising doses of TLR3 agonist preferentially caused inflammatory adaptation without inducing tolerance. At the molecular level, the differential regulation of IRF5 and Blimp-1 coincides with unique monocyte adaptation dynamics by TLR4/7 and TLR3 agonists. Our study provides novel clue toward the understanding of monocyte adaptation and memory toward distinct TLR ligands.
Collapse
Affiliation(s)
- Ruoxi Yuan
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, VA , USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|