1
|
Hoang HD, Pham HM, Tran NT, Durand JD, Wu L, Pfeiffer J, Chen XY, Page LM. Taxonomic revision of the Southeast Asian brook barb genus Poropuntius Smith, 1931 (Teleostei, Cyprinidae) with description of a new species from Vietnam. Zookeys 2024; 1204:199-222. [PMID: 38882566 PMCID: PMC11176814 DOI: 10.3897/zookeys.1204.120873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/04/2024] [Indexed: 06/18/2024] Open
Abstract
Molecular data from samples encompassing 22 nominal species of Poropuntius indicate that the species-level diversity in the genus has been vastly overestimated, likely due to inadequate taxon and geographic sampling and reliance on morphological characters that vary intra-specifically. The latter includes discrete mouth morphologies related to alternate feeding strategies (ecomorphs) within populations. One new species is described, Poropuntiusanlaoensis Hoàng, Phạm & Trần, sp. nov., and 17 synonyms of six valid species names of Poropuntius, P.krempfi, P.alloiopleurus, P.huangchuchieni, P.laoensis, P.kontumensis, and P.deauratus, are recognised. Additional taxonomic changes in this widespread and generally poorly known genus are likely as more molecular and morphological data become available.
Collapse
Affiliation(s)
- Huy Duc Hoang
- Department of Ecology and Evolutionary Biology, University of Science, Ho Chi Minh City, Vietnam University of Science Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam Vietnam National University Ho Chi Minh City Vietnam
| | - Hung Manh Pham
- Department of Ecology and Evolutionary Biology, University of Science, Ho Chi Minh City, Vietnam University of Science Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam Vietnam National University Ho Chi Minh City Vietnam
| | - Ngan Trong Tran
- Department of Ecology and Evolutionary Biology, University of Science, Ho Chi Minh City, Vietnam University of Science Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam Vietnam National University Ho Chi Minh City Vietnam
| | - Jean-Dominique Durand
- IRD, MARBEC (University of Montpellier, CNRS, Ifremer, IRD), Montpellier, France University of Montpellier Montpellier France
| | - Ling Wu
- Southeast Asia Wildlife Biodiversity Research Group, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China Kunming Institute of Zoology, the Chinese Academy of Sciences Kunming China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Yezin, Nay Pyi Taw 05282, Myanmar Southeast Asia Biodiversity Research Institute, Chinese Academy of Science Yezin Myanmar
| | - John Pfeiffer
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC 20560, USA National Museum of Natural History Washington, DC United States of America
| | - Xiao-Yong Chen
- Southeast Asia Wildlife Biodiversity Research Group, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China Kunming Institute of Zoology, the Chinese Academy of Sciences Kunming China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Science, Yezin, Nay Pyi Taw 05282, Myanmar Southeast Asia Biodiversity Research Institute, Chinese Academy of Science Yezin Myanmar
| | - Lawrence M Page
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA University of Florida Gainesville United States of America
| |
Collapse
|
2
|
Regmi B, Douglas MR, Wangchuk K, Zbinden ZD, Edds DR, Tshering S, Douglas ME. The Himalayan uplift and evolution of aquatic biodiversity across Asia: Snowtrout (Cyprininae: Schizothorax) as a test case. PLoS One 2023; 18:e0289736. [PMID: 37874844 PMCID: PMC10597529 DOI: 10.1371/journal.pone.0289736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/26/2023] [Indexed: 10/26/2023] Open
Abstract
Global biodiversity hotspots are often remote, tectonically active areas undergoing climatic fluctuations, such as the Himalaya Mountains and neighboring Qinghai-Tibetan Plateau (QTP). They provide biogeographic templates upon which endemic biodiversity can be mapped to infer diversification scenarios. Yet, this process can be somewhat opaque for the Himalaya, given substantial data gaps separating eastern and western regions. To help clarify, we evaluated phylogeographic and phylogenetic hypotheses for a widespread fish (Snowtrout: Cyprininae; Schizothorax) by sequencing 1,140 base pair of mtDNA cytochrome-b (cytb) from Central Himalaya samples (Nepal: N = 53; Bhutan: N = 19), augmented with 68 GenBank sequences (N = 60 Schizothorax/N = 8 outgroups). Genealogical relationships (N = 132) were analyzed via maximum likelihood (ML), Bayesian (BA), and haplotype network clustering, with clade divergence estimated via TimeTree. Snowtrout seemingly originated in Central Asia, dispersed across the QTP, then into Bhutan via southward-flowing tributaries of the east-flowing Yarlung-Tsangpo River (YLTR). Headwaters of five large Asian rivers provided dispersal corridors from Central into eastern/southeastern Asia. South of the Himalaya, the YLTR transitions into the Brahmaputra River, facilitating successive westward colonization of Himalayan drainages first in Bhutan, then Nepal, followed by far-western drainages subsequently captured by the (now) westward-flowing Indus River. Two distinct Bhutanese phylogenetic groups were recovered: Bhutan-1 (with three subclades) seemingly represents southward dispersal from the QTP; Bhutan-2 apparently illustrates northward colonization from the Lower Brahmaputra. The close phylogenetic/phylogeographic relationships between the Indus River (Pakistan) and western tributaries of the Upper Ganges (India/Nepal) potentially implicate an historic, now disjunct connection. Greater species-divergences occurred across rather than within-basins, suggesting vicariance as a driver. The Himalaya is a component of the Earth's largest glacial reservoir (i.e., the "third-pole") separate from the Arctic/Antarctic. Its unique aquatic biodiversity must be defined and conserved through broad, trans-national collaborations. Our study provides an initial baseline for this process.
Collapse
Affiliation(s)
- Binod Regmi
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Marlis R. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Karma Wangchuk
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- National Research & Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture & Forests, Royal Government of Bhutan, Thimphu, Bhutan
| | - Zachery D. Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - David R. Edds
- Department of Biological Sciences, Emporia State University, Emporia, Kansas, United States of America
| | - Singye Tshering
- National Research & Development Centre for Riverine and Lake Fisheries, Ministry of Agriculture & Forests, Royal Government of Bhutan, Thimphu, Bhutan
| | - Michael E. Douglas
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
3
|
Qiao D, Zhao Y, Pei C, Zhao X, Jiang X, Zhu L, Zhang J, Li L, Kong X. Genome-wide identification, evolutionary analysis, and antimicrobial activity prediction of CC chemokines in allotetraploid common carp, Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2022; 130:114-131. [PMID: 36084887 DOI: 10.1016/j.fsi.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Chemokines are a group of secreted small molecules which are essential for cell migration in physiological and pathological conditions by binding to specific chemokine receptors. They are structurally classified into five groups, namely CXC, CC, CX3C, XC and CX. CC chemokine group is the largest one among them. In this study, we identified and characterized 61 CC chemokines from allotetraploid common carp (Cyprinus carpio). The sequence analyses showed that the majority of CC chemokines had an N-terminal signal peptide, and an SCY domain, and all CC chemokines were located in the extracellular region. Phylogenetic, evolutionary and syntenic analyses confirmed that CC chemokines were annotated as 11 different types (CCL19, CCL20, CCL25, CCL27, CCL32, CCL33, CCL34, CCL35, CCL36, CCL39, and CCL44), which exhibited unique gene arrangement pattern and chromosomal location respectively. Furthermore, genome synteny analyses between common carp and four representative teleost species indicated expansion of common carp CC chemokines resulted from the whole genome duplication (WGD) event. Additionally, the continuous evolution of gene CCL25s in teleost afforded a novel viewpoint to explain the WGD event in teleost. Then, we predicted the three-dimensional structures and probable function regions of common carp CC chemokines. All the CC chemokines core structures were constituted of an N-loop, a three-stranded β-sheet, and a C-terminal helix. Finally, 43 CC chemokines were predicted to have probable general antimicrobial activity. Their tertiary structures, cationic and amphiphilic physicochemical property supported the viewpoint. To verify the prediction, six recombinant CCL19s proteins were prepared and the antibacterial activity against Escherichia coli and Aeromonas hydrophila were verified. The results supported our prediction that rCCL19a.1s (rCCL19a.1_a, rCCL19a.1_b) and rCCL19bs (rCCL19b_a, rCCL19b_b), especially rCCL19bs, exhibited extremely significant inhibition to the growth of both E. coli and A. hydrophila. On the contrary, two rCCL19a.2s had no significant inhibitory effect. These studies suggested that CC chemokines were essential in immune system evolution and not monofunctional during pathogen infection.
Collapse
Affiliation(s)
- Dan Qiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
4
|
Zhong H, Sun Y, Wu H, Li S, Shen Z, Yang C, Wen M, Chen P, Gu Q. Pleistocene climate and geomorphology drive the evolution and phylogeographic pattern of Triplophysa robusta (Kessler, 1876). Front Genet 2022; 13:955382. [PMID: 36171893 PMCID: PMC9510703 DOI: 10.3389/fgene.2022.955382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Montane systems provide excellent opportunities to study the rapid radiation influenced by geological and climatic processes. We assessed the role of Pleistocene climatic oscillations and mountain building on the evolution history of Triplophysa robusta, a cold-adapted species restricted to high elevations in China. We found seven differentiated sublineages of T. robusta, which were established during the Mid Pleistocene 0.87–0.61 Mya. The species distribution modeling (SDM) showed an expansion of T. robusta during the Last Glacial Maximum (LGM) and a considerable retraction during the Last Interglacial (LIG). The deep divergence between Clade I distributed in Qinling Mountains and Clade II in Northeastern Qinghai-Tibet Plateau (QTP) was mainly the result of a vicariance event caused by the rapid uplifting of Qinling Mountains during the Early Pleistocene. While the middling to high level of historical gene flow among different sublineages could be attributed to the dispersal events connected to the repetition of the glacial period during the Pleistocene. Our findings suggested that frequent range expansions and regressions due to Pleistocene glaciers likely have been crucial for driving the phylogeographic pattern of T. robusta. Finally, we urge a burning question in future conservation projection on the vulnerable cold-adapted species endemic to high elevations, as they would be negatively impacted by the recent rapid climate warming.
Collapse
Affiliation(s)
- Hui Zhong
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaxian Sun
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huihui Wu
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
| | - Shengnan Li
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhongyuan Shen
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Conghui Yang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming Wen
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Chen
- Xinjiang Uygur Autonomous Region Fishery Research Institute, Urumchi, China
| | - Qianhong Gu
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, China
- *Correspondence: Qianhong Gu,
| |
Collapse
|
5
|
Tian F, Liu S, Zhou B, Tang Y, Zhang Y, Zhang C, Zhao K. Chromosome-level genome of Tibetan naked carp ( Gymnocypris przewalskii) provides insights into Tibetan highland adaptation. DNA Res 2022; 29:6647840. [PMID: 35861387 PMCID: PMC9326183 DOI: 10.1093/dnares/dsac025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Gymnocypris przewalskii, a cyprinid fish endemic to the Qinghai-Tibetan Plateau, has evolved unique morphological, physiological and genetic characteristics to adapt to the highland environment. Herein, we assembled a high-quality G. przewalskii tetraploid genome with a size of 2.03 Gb and scaffold N50 of 44.93 Mb, which was anchored onto 46 chromosomes. The comparative analysis suggested that gene families related to highland adaptation were significantly expanded in G. przewalskii. According to the G. przewalskii genome, we evaluated the phylogenetic relationship of 13 schizothoracine fishes, and inferred that the demographic history of G. przewalskii was strongly associated with geographic and eco-environmental alterations. We noticed that G. przewalskii experienced whole-genome duplication, and genes preserved post duplication were functionally associated with adaptation to high salinity and alkalinity. In conclusion, a chromosome-scale G. przewalskii genome provides an important genomic resource for teleost fish, and will particularly promote our understanding of the molecular evolution and speciation of fish in the highland environment.
Collapse
Affiliation(s)
- Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
| | - Bingzheng Zhou
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Yongtao Tang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- Henan Normal University , Xinxiang, China
| | - Yu Zhang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Cunfang Zhang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University , Xining, Qinghai, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai, China
| |
Collapse
|
6
|
Nie Z, Ren Y, Zhang L, Ge R, Wei J. Analysis of Population Genetic Diversity and Genetic Structure of Schizothorax biddulphi Based on 20 Newly Developed SSR Markers. Front Genet 2022; 13:908367. [PMID: 35769984 PMCID: PMC9234283 DOI: 10.3389/fgene.2022.908367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
To protect the germplasm resources of Schizothorax biddulphi, we developed and used 20 pairs of polymorphic microsatellite primers to analyze the genetic diversity and structure of populations. A total of 126 samples were collected from the Qarqan River (CEC), Kizil River (KZL), and Aksu River (AKS) in Xinjiang, China. The results showed that 380 alleles were detected in 20 pairs of primers and the average number of alleles was 19.0. The effective allele numbers and Nei’s gene diversity ranged from 1.1499 to 1.1630 and 0.0962 to 0.1136, respectively. The Shannon index range suggested low levels of genetic diversity in all populations. The genetic distance between the CEC and AKS populations was the largest, and the genetic similarity was the smallest. There was a significant genetic differentiation between CEC and the other two populations. The UPGMA clustering tree was constructed based on population genetic distance, and the clustering tree constructed by individuals showed that the AKS population and KZL population were clustered together, and the CEC population was clustered separately. Also, the group structure analysis also got the same result. It can be seen that although the three populations of S. biddulphi do not have high genetic diversity, the differentiation between the populations was high and the gene flow was limited, especially the differentiation between the CEC population and the other two populations. This study not only provided genetic markers for the research of S. biddulphi but the results of this study also suggested the need for enhanced management of S. biddulphi populations.
Collapse
Affiliation(s)
- Zhulan Nie
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry and Science Technology of Xinjiang Production and Construction Corps., Alar, China
- State Key Laboratory Breeding Base of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Crops and Ministry of Science and Technology, Alar, China
- College of Life Science, Tarim University, Alar, China
| | - Yongli Ren
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry and Science Technology of Xinjiang Production and Construction Corps., Alar, China
- State Key Laboratory Breeding Base of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Crops and Ministry of Science and Technology, Alar, China
| | - Lirong Zhang
- Key Laboratory of Tarim Animal Husbandry and Science Technology of Xinjiang Production and Construction Corps., Alar, China
- State Key Laboratory Breeding Base of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Crops and Ministry of Science and Technology, Alar, China
- College of Life Science, Tarim University, Alar, China
| | - Rui Ge
- Key Laboratory of Tarim Animal Husbandry and Science Technology of Xinjiang Production and Construction Corps., Alar, China
- State Key Laboratory Breeding Base of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Crops and Ministry of Science and Technology, Alar, China
- College of Life Science, Tarim University, Alar, China
| | - Jie Wei
- College of Animal Science and Technology, Tarim University, Alar, China
- Key Laboratory of Tarim Animal Husbandry and Science Technology of Xinjiang Production and Construction Corps., Alar, China
- State Key Laboratory Breeding Base of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Crops and Ministry of Science and Technology, Alar, China
- College of Life Science, Tarim University, Alar, China
- *Correspondence: Jie Wei,
| |
Collapse
|
7
|
Ecohydraulic Characteristics of a Differential Weir-Orifice Structure and Its Application to the Transition Reach of a Fishway. WATER 2022. [DOI: 10.3390/w14111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A transition reach is usually necessary to connect two channels with different cross-sections to facilitate a gradual variation of the water depth and a mean flow velocity profile. A modified weir–orifice structure named differential weir-orifice (abbreviated DWO) is proposed here and applied to the transition reach of a fishway. Considering the preferred flow velocity and body shape of specific migrating fish, the design guidelines of a DWO plate are firstly discussed in terms of basic hydraulics. Then, by means of hydrodynamic numerical simulation and scale model tests, the design of a non-prismatic transition reach in a proposed large fishway is studied and optimized with a DWO. The simulation results indicate that the velocity profile in conventional weirs varies in the range of 2.5 to 3.2 m/s, and the head drop of each stage is up to 0.4 m, which is not suitable for fish migration. However, the flow could be improved by adopting the DWO: the split ratio of each weir gradually increases from 13% to 40%, with weir height decreasing along the reach, which allows the water drop of each stage to decrease by 35% to 50%. This causes the velocity over the weir to reduce in the range of 1.2 to 2.1 m/s, while the velocity in the orifice flow remains limited to 0.8 to 1.3 m/s. The flow velocity profile in the DWO also presents a bimodal distribution, with different flow layers increasing the suitability for fish migration. Moreover, the DWO also performs well in decreasing the vertical turbulent intensity together with the turbulent kinetic energy, reduced by about 33% at the weir crest. The energy at the bottom orifice is only about 28% of that at the weir crest. This indicates that the turbulent kinetic energy profile could be adjusted by the DWO, part of which is transferred from the weir crest to the bottom orifice. The model test results also show that the water surface experienced only gradual variation along the DWO. The adjusting functionality of the DWO can enable the fishway to be more effective, promoting an ecohydraulic design solution for fishway structures.
Collapse
|
8
|
Genome-wide characterization of the Elovl gene family in Gymnocypris przewalskii and their potential roles in adaptation to cold temperature. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110759. [PMID: 35605755 DOI: 10.1016/j.cbpb.2022.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
The elongase of the very long-chain fatty acids (Elovls) gene family in fish has more diversity than in other vertebrates, which plays several critical roles in fatty acid synthesis and low-temperature stress adaptation. Gymnocypris przewalskii settles in plateau lakes with cold and resource-poor settings, and the evolution and function of Elovl genes in this fish are unknown. In the study, to identify the Elovl genes in G. przewalskii, the genome-wide identification and phylogenetic analysis of the gene members have been conducted with the expression profile of different tissues under cold stress. Fatty acid compositions, meanwhile, were detected in both the hepatopancreas and skeletal muscle during cold adaptation. A total of 21 Elovl members have been identified from the genome of G. przewalskii, belonging to Elovl1, Elovl2, Elovl4, Elovl5, Elovl6, Elovl7, and Elovl8 subgroups, with conserved ELO domain and four common motifs. Phylogenetic analysis revealed that subfamilies Elovl1 and Elovl7, Elov2, and Elovl5 have a closer genetic relationship, while the Elovl6 class was classed into an independent clade. Synteny analysis showed that whole-genome duplication, tandem duplicates, and gene conversion could drive the Elovls family expansion in G. przewalskii. The Ka/Ks and RELAX analysis showed distinguishing positive selection traces in ORF sequences of gpElovl2. Transcriptional data showed that different gpElovl subtypes exhibited a tissue-specific expression. Subtypes gpElovl1a, gpElovl2 and gpElovl6l were highly expressed induced by cold stress, as well as fatty acid metabolism-related genes, including Acyl-CoA synthetase long-chain gene (Ascl1a-1) and Stearyl-CoA desaturase gene (Scd1a-1). In addition, monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) contents of the hepatopancreas and skeletal muscle were significantly increased under 15-day cold stress. These results provide a better understanding of fish Elovl genes and their roles in cold adaptation.
Collapse
|
9
|
Gu H, He X, Wu Y, Deng S, Jiang Y, Yu J, Deng Z, Xing K, Wang Z. Examining differentiation of sympatric
Schizothorax
fishes reveals low differentiation in internal compared to external feeding traits. J Zool (1987) 2022. [DOI: 10.1111/jzo.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- H. Gu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| | - X. He
- Sichuan Lubei Biotechnology Company Limited Chengdu China
| | - Y. Wu
- Sichuan Lubei Biotechnology Company Limited Chengdu China
| | - S. Deng
- Liangshan Kehua Water Ecology Company Limited Xichang China
| | - Y. Jiang
- Butuo Agriculture and Rural Affairs Bureau Butuo China
| | - J. Yu
- Zhaojue Agriculture and Rural Affairs Bureau Zhaojue China
| | - Z. Deng
- Liangshan Kehua Water Ecology Company Limited Xichang China
| | - K. Xing
- Xichang Agriculture and Rural Affairs Bureau Xichang China
| | - Z. Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education) Key Laboratory of Aquatic Science of Chongqing School of Life Sciences Southwest University Chongqing China
| |
Collapse
|
10
|
Wen H, Luo T, Wang Y, Wang S, Liu T, Xiao N, Zhou J. Molecular phylogeny and historical biogeography of the cave fish genus Sinocyclocheilus (Cypriniformes: Cyprinidae) in southwest China. Integr Zool 2021; 17:311-325. [PMID: 34958525 DOI: 10.1111/1749-4877.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modern accumulations of genetic data offer unprecedented opportunities for understanding the systematic classification and origins of specific groups of organisms. The genus Sinocyclocheilus is among the most cave abundant genera in Cyprinidae, with 76 recognized species, belonging to four species groups. Recent phylogenetic studies have shown that the classification of species groups within the genus Sinocyclocheilus remains controversial. In this study, we constructed a sequence supermatrix of 26 species from four species groups of the genus Sinocyclocheilus using the mitochondrial genome to reveal phylogenetic relationships, historical biogeography and patterns of species diversification in the genus Sinocyclocheilus. Phylogenetic analysis strongly supports the monophyletic groups of the three species groups (S. jii, S. cyphotergous, and S. tingi groups) except the S. angularis group. Phylogenetic analysis showed that S. anshuiensis and S. microphthalmus, which were recognized as numbers of S. angularis group, formed a strongly supported independent clade. Therefore, we propose a new species group, the S. microphthalmus group, which contains S. anshuiensis and S. microphthalmus. Biogeographic reconstruction suggests that the living Sinocyclocheilus may have originated in north-central Guangxi at the late Eocene and dispersed outward after a vicariance at 32.31 Million years ago (Ma). Early diversification is focused on the late Oligocene (ca. 25 Ma), which is related to the second uplift of the Qinghai-Tibetan Plateau and the lateral extrusion of the Indochina at the Oligocene/Miocene boundary. Our results suggest that two uplifts of the Qinghai-Tibetan Plateau and climate change in the Miocene may have influenced the diversification of the Sinocyclocheilus lineage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huamei Wen
- School of Life Sciences, Central China Normal University, Wuhan, China.,School of Karst Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Luo
- School of Karst Sciences, Guizhou Normal University, Guiyang, China
| | - Yali Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Siwei Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Liu
- Liupanshui No. 4 Higth School, Liupanshui, China
| | - Ning Xiao
- Guiyang Nursing Vocational College, Guiyang, China
| | - Jiang Zhou
- School of Karst Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
11
|
Yang MDH, Wang Q, Zhao R, Li QS, Cui MS, Zhang Y, Li JT. Cyprinus carpio (common carp). Trends Genet 2021; 38:305-306. [PMID: 34876258 DOI: 10.1016/j.tig.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Mei-Di Huang Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Qing-Song Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ming-Shu Cui
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
12
|
Li JT, Wang Q, Huang Yang MD, Li QS, Cui MS, Dong ZJ, Wang HW, Yu JH, Zhao YJ, Yang CR, Wang YX, Sun XQ, Zhang Y, Zhao R, Jia ZY, Wang XY. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat Genet 2021; 53:1493-1503. [PMID: 34594040 PMCID: PMC8492472 DOI: 10.1038/s41588-021-00933-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
How two subgenomes in allo-tetraploids adapt to coexistence and coordinate through structure and expression evolution requires extensive studies. In the present study, we report an improved genome assembly of allo-tetraploid common carp, an updated genome annotation of allo-tetraploid goldfish and the chromosome-scale assemblies of a progenitor-like diploid Puntius tetrazona and an outgroup diploid Paracanthobrama guichenoti. Parallel subgenome structure evolution in the allo-tetraploids was featured with equivalent chromosome components, higher protein identities, similar transposon divergence and contents, homoeologous exchanges, better synteny level, strong sequence compensation and symmetric purifying selection. Furthermore, we observed subgenome expression divergence processes in the allo-tetraploids, including inter-/intrasubgenome trans-splicing events, expression dominance, decreased expression levels, dosage compensation, stronger expression correlation, dynamic functionalization and balancing of differential expression. The potential disorders introduced by different progenitors in the allo-tetraploids were hypothesized to be alleviated by increasing structural homogeneity and performing versatile expression processes. Resequencing three common carp strains revealed two major ecotypes and uncovered candidate genes relevant to growth and survival rate.
Collapse
Affiliation(s)
- Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Mei-Di Huang Yang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qing-Song Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ming-Shu Cui
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zai-Jie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Hong-Wei Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ju-Hua Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Yu-Jie Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Chen-Ru Yang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ya-Xin Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Xiao-Qing Sun
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, China
| | - Zhi-Ying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xi-Yin Wang
- North China University of Science and Technology, Tangshan, China
| |
Collapse
|
13
|
Huang Y, Sun M, Zhuang L, He J. Molecular Phylogenetic Analysis of the AIG Family in Vertebrates. Genes (Basel) 2021; 12:genes12081190. [PMID: 34440364 PMCID: PMC8394805 DOI: 10.3390/genes12081190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.
Collapse
Affiliation(s)
- Yuqi Huang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Minghao Sun
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| | - Jin He
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Correspondence: (L.Z.); (J.H.); Tel.: +86-15-8361-28207 (L.Z.); +86-17-6818-74822 (J.H.)
| |
Collapse
|
14
|
Zhao YJ, Xiao J, Huangyang MD, Zhao R, Wang Q, Zhang Y, Li JT. Transcriptome sequencing and analysis for the pigmentation of scale and skin in common carp (Cyprinus carpio). Mol Biol Rep 2021; 48:2399-2410. [PMID: 33742327 DOI: 10.1007/s11033-021-06273-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/09/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Teleost scale not only provides a protective layer resisting penetration and pathogens but also participate in coloration. It is interesting to study the mechanism of teleost scale formation. Furthermore, whether there existed consensus genes between scale coloration and skin coloration has not been examined yet. METHODS AND RESULTS We analyzed the transcriptome profiles of red scale, white scale, red skin, and white skin of common carp (Cyprinus carpio). Pair-wise comparison identified 3391 differentially expressed genes (DEGs) between scale and skin, respectively. The 1765 up-regulated genes (UEGs) in scale, as the down-regulated genes in skin, preferred mineralization and other scale development-related processes. The 1626 skin UEGs were enriched in the morphogenesis of skin and appendages. We also identified 195 UEGs in white scale and 223 UEGs in red scale. The white scale UEGs primarily participated in regulation of growth and cell migration. The UEGs in red scale preferred pigment cell differentiation and retinoid metabolic process. A total of 22 DEGs had consensus expression patterns in skin and scale of the same coloration. The expression levels of these DEGs clearly grouped skin and scale of the same coloration together with principle component analysis and correlation analysis. Eleven consensus DEGs were homologous to the orthologs of Poropuntius huangchuchieni, 82% of which were under strong purifying selection. Eight processes including lipid storage and lipid catabolism were shared in both scale pigmentation and skin pigmentation. CONCLUSIONS We identified consensus DEGs and biological processes in scale and skin pigmentation. Our transcriptome analysis will contribute to further elucidation of mechanisms of teleost scale formation and coloration.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jun Xiao
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Mei-Di Huangyang
- College of Fisheries and Life, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Ran Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Qi Wang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jiong-Tang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
15
|
Chen L, Li B, Chen B, Li C, Zhou Z, Zhou T, Yang W, Xu P. Chromosome-level genome of Poropuntius huangchuchieni provides a diploid progenitor-like reference genome for the allotetraploid Cyprinus carpio. Mol Ecol Resour 2021; 21:1658-1669. [PMID: 33624395 DOI: 10.1111/1755-0998.13365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
The diploid Poropuntius huangchuchieni in the cyprinid family, which is widely distributed in the Mekong and Red River basins, is one of the most closely related diploid progenitor-like species of allotetraploid common carp, which was generated by merging of two diploid genomes during evolution. Therefore, the P. huangchuchieni genome is essential for polyploid evolution studies in Cyprinidae. Here, we report a high-quality chromosome-level genome assembly of P. huangchuchieni by integrating Oxford Nanopore and Hi-C technologies. The assembled genome size was 1,021.38 Mb, 895.66 Mb of which was anchored onto 25 chromosomes with a N50 of 32.93 Mb. The genome contained 486.28 Mb repetitive elements and 24,099 protein-coding genes. Approximately 95.9% of the complete BUSCOs were detected, suggesting a high completeness of the genome. Evolutionary analysis revealed that P. huangchuchieni diverged from Cyprinus carpio at approximately 12 Mya. Genome comparison between P. huangchuchieni and the B subgenome of C. carpio provided insights into chromosomal rearrangements during the allotetraploid speciation. With the complete gene set, 17,474 orthologous genes were identified between P. huangchuchieni and C. carpio, providing a broad view of the gene component in the allotetraploid genome, which is critical for future genetic analyses. The high-quality genomic data set created for P. huangchuchieni provides a diploid progenitor-like reference for the evolution and adaptation of allotetraploid carps.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Bijun Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Chengyu Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Weidi Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Wang IC, Lin HD, Liang CM, Huang CC, Wang RD, Yang JQ, Wang WK. Complete mitochondrial genome of the freshwater fish Onychostoma lepturum (Teleostei, Cyprinidae): genome characterization and phylogenetic analysis. Zookeys 2020; 1005:57-72. [PMID: 33390755 PMCID: PMC7765746 DOI: 10.3897/zookeys.1005.57592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
The cyprinid genus Onychostoma Günther, 1896 consists of 24 valid species distributed in Southeast Asia, including Taiwan, Hainan, mainland China and the Indochina region. In the present study, we determined the complete mitochondrial genome of O. lepturum, which is 16,598 bp in length, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region (D-loop). To verify the molecular phylogeny of the subfamily Acrossocheilinae, we provide new insights to better understand the taxonomic status of Acrossocheilus, Onychostoma and Folifer brevifilis. The phylogenetic trees presented three major clades based on the 13 protein-coding genes from 28 Acrossocheilinae species. Clades I and II represent the Onychostoma and Acrossocheilus groups, respectively. Species of Acrossocheilus, Onychostoma and F. brevifilis are included in Clade III, which is considered as an ancestral group. This work provides genomic variation information and improves our understanding of the Acrossocheilinae mitogenome, which will be most valuable in providing new insights for phylogenetic analysis and population genetics research.
Collapse
Affiliation(s)
- I-Chen Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, TaiwanFeng Chia UniversityTaichungTaiwan
| | - Hung-Du Lin
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, TaiwanFeng Chia UniversityTaichungTaiwan
| | - Chih-Ming Liang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, TaiwanFeng Chia UniversityTaichungTaiwan
| | - Chi-Chun Huang
- Taiwan Endemic Species Research Institute, Nantou 552, TaiwanTaiwan Endemic Species Research InstituteNantouTaiwan
| | - Rong-Da Wang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, ChinaShanghai Ocean UniversityShanghaiChina
| | - Jin-Quan Yang
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, ChinaShanghai Ocean UniversityShanghaiChina
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, TaiwanFeng Chia UniversityTaichungTaiwan
| |
Collapse
|
17
|
Sharma A, Siva C, Ali S, Sahoo PK, Nath R, Laskar M, Sarma D. The complete mitochondrial genome of the medicinal fish, Cyprinion semiplotum: Insight into its structural features and phylogenetic implications. Int J Biol Macromol 2020; 164:939-948. [DOI: 10.1016/j.ijbiomac.2020.07.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 01/24/2023]
|
18
|
The evolutionary origin and domestication history of goldfish ( Carassius auratus). Proc Natl Acad Sci U S A 2020; 117:29775-29785. [PMID: 33139555 DOI: 10.1073/pnas.2005545117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish-the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.
Collapse
|
19
|
Lei Y, Yang L, Jiang H, Chen J, Sun N, Lv W, He S. Recent genome duplications facilitate the phenotypic diversity of Hb repertoire in the Cyprinidae. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1149-1164. [PMID: 33051703 DOI: 10.1007/s11427-020-1809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Whole-genome duplications (WGDs) are an important contributor to phenotypic innovations in evolutionary history. The diversity of blood oxygen transport traits is the perfect reflection of physiological versatility for evolutionary success among vertebrates. In this study, the evolutionary changes of hemoglobin (Hb) repertoire driven by the recent genome duplications were detected in representative Cyprinidae fish, including eight diploid and four tetraploid species. Comparative genomic analysis revealed a substantial variation in both membership composition and intragenomic organization of Hb genes in these species. Phylogenetic reconstruction analyses were conducted to characterize the evolutionary history of these genes. Data were integrated with the expression profiles of the genes during ontogeny. Our results indicated that genome duplications facilitated the phenotypic diversity of the Hb gene family; each was associated with species-specific changes in gene content via gene loss and fusion after genome duplications. This led to repeated evolutionary transitions in the ontogenic regulation of Hb gene expression. Our results revealed that genome duplications helped to generate phenotypic changes in Cyprinidae Hb systems.
Collapse
Affiliation(s)
- Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
20
|
Wu H, Gu Q, Zhou C, Tang Y, Husemann M, Meng X, Zhang J, Nie G, Li X. Molecular phylogeny and biogeography of Triplophysa stone loaches in the Central Chinese Mountains. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractThe geological structure and history of mountains often cause highly complex patterns of evolution. The origin and diversity of the genus Triplophysa is considered to be closely associated with the rapid and persistent rise of the Qinghai-Tibet Plateau (QTP). Species of the genus are widely distributed in the QTP and adjacent regions, and are strongly adapted to its extreme environments. However, the Central Chinese Mountains (CCM), which are far apart from the QTP, also have many Triplophysa populations and yet their taxonomy, phylogeny and origin are unknown. We used three mitochondrial genes of 266 individuals from 29 sites in the CCM to shed light on the evolution of these Triplophysa populations. Phylogenetic analyses and species delimitation revealed seven distinct molecular operational taxonomic units (mOTUs) in the CCM, each with low genetic diversity. Molecular clock and biogeographic analyses suggested that vicariance events resulting from the rapid uplifting of the Qinling and Taihang Mountains initialized diversification in the Pliocene. During the early Pleistocene, dispersal events in the central parts of the Yellow River drainage altered genetic diversity and led to the currently observed biogeographic patterns. Our results suggest the presence of at least six species of Triplophysa in the CCM and more are likely to be discovered in the future.
Collapse
Affiliation(s)
- Huihui Wu
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Qianhong Gu
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P.R. China
| | - Chuanjiang Zhou
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Yongtao Tang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Martin Husemann
- Centrum für Naturkunde, Universität Hamburg, Hamburg, Germany
| | - Xiaolin Meng
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Jianxin Zhang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Guoxing Nie
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
| | - Xuejun Li
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, Henan, P.R. China
| |
Collapse
|
21
|
Li X, Guo B. Substantially adaptive potential in polyploid cyprinid fishes: evidence from biogeographic, phylogenetic and genomic studies. Proc Biol Sci 2020; 287:20193008. [PMID: 32075533 DOI: 10.1098/rspb.2019.3008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Whole genome duplication (WGD) is commonly believed to play key roles in vertebrate evolution. However, nowadays polyploidy exists in a few fish, amphibian and reptile groups only, and seems to be an evolutionary dead end in vertebrates. We investigate the evolutionary significance of polyploidization in Cyprinidae-a fish family that contains more polyploid species than any other vertebrate group-with integrated biogeographic, phylogenetic and genomic analyses. First, polyploid species are found to be significantly frequent in areas of higher altitude and lower mean annual temperature compared with diploid species in Cyprinidae. Second, a polyploidy-related diversification rate shift is observed in Cyprinidae. This increased net diversification rate is only seen in three polyploid lineages, and other polyploid lineages have similar net diversification rate as well as diploid lineages in Cyprinidae. Interestingly, significant 'lag times' existed between polyploidization and radiation in Cyprinidae. Multiple polyploid lineages were established approximately 15 Ma through recurrent allopolyploidization events, but the net diversification rate did not start to increase until approximately 5 Ma-long after polyploidization events. Environmental changes associated with the continuous uplift of the Tibetan Plateau and climate change have probably promoted the initial establishment and subsequent radiation of polyploidy in Cyprinidae. Finally, the unique retention of duplicated genes in polyploid cyprinids adapted to harsh environments is found. Taken together, our results suggest that polyploidy in Cyprinidae is far more than an evolutionary dead end, but rather shows substantially adaptive potential. Polyploid cyprinids thus constitute an ideal model system for unveiling largely unexplored consequences of WGD in vertebrates, from genomic evolution to species diversification.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China
| |
Collapse
|
22
|
Tao R, Xu C, Wang Y, Sun X, Li C, Ma J, Hao J, Yang Q. Spatiotemporal Differentiation of Alpine Butterfly Parnassius glacialis (Papilionidae: Parnassiinae) in China: Evidence from Mitochondrial DNA and Nuclear Single Nucleotide Polymorphisms. Genes (Basel) 2020; 11:genes11020188. [PMID: 32053967 PMCID: PMC7073557 DOI: 10.3390/genes11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/24/2022] Open
Abstract
The Apollo butterfly, Parnassius glacialis, is one of the most charming members of its genus and includes two subspecies locally distributed in montane areas of south-central China and Japan. In this study, we investigated the genetic structure and demographic history of P. glacialis by analyzing partial sequences of four mitochondrial genes and nuclear single nucleotide polymorphisms (SNPs) via genotyping-by-sequencing (GBS) of samples from nearly the entire known distributional range in China. The mitochondrial DNA (mtDNA) data demonstrated that a total of 39 haplotypes were present, and the species was estimated to have diverged about 0.95 million years ago during the middle Pleistocene transition into two main clades that likely formed during the Kunlun-Huanghe tectonic movement. The two clades then dispersed independently in distinct geographic areas alongside the mountainous routes in central and southern China, most likely driven by the Pleistocene glacial-interglacial cycles. Nuclear SNP analysis was generally congruent with mtDNA results at the individual level. A minor incongruence of genetic structures that was detected between mtDNA and nuclear SNP data from the Laojunshan and Tiantangzhai populations was likely due to secondary contact and male-biased dispersal. Our work demonstrates that complicated dispersal-vicariance evolutionary processes likely led to the current geographic distribution of P. glacialis in China, particularly the uplift of the Qinghai-Tibet Plateau and related climatic oscillations during the Quaternary period.
Collapse
Affiliation(s)
- Ruisong Tao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
- College of Life Sciences, Hefei Normal University, Hefei 230000, China
| | - Chang Xu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
| | - Yunliang Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
| | - Xiaoyan Sun
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
| | - Chunxiang Li
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
| | - Junye Ma
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (R.T.); (C.X.); (Y.W.)
- Correspondence: (J.H.); (Q.Y.)
| | - Qun Yang
- SKLPS and Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; (X.S.); (C.L.); (J.M.)
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.H.); (Q.Y.)
| |
Collapse
|
23
|
Chen M, An R, Li J, Li K, Li F. Identifying operation scenarios to optimize attraction flow near fishway entrances for endemic fishes on the Tibetan Plateau of China to match their swimming characteristics: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133615. [PMID: 31376753 DOI: 10.1016/j.scitotenv.2019.133615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Attracting fish at fishway entrances is vital for ensuring fish passage efficiency, which requires consideration of the swimming characteristics of fish. The objective of this case study was to propose optimized flow conditions downstream of a dam on the Tibetan Plateau to attract fish into fishways. Six local endemic species of Cyprinidae: Schizothoracinae were considered as protection targets. However, the swimming abilities of most endemic fishes on the plateau remain unclear, and no previous projects in this area could serve as a reference. Thus, the swimming performances of the target species were first tested based on three indexes, induction velocity, critical swimming speed and bursting swimming speed, and six behavior zones were classified by different flow velocity thresholds based on the test results. A verified 3D hydrodynamic model was then adopted to simulate the flow field downstream of the dam under four typical reservoir operation scenarios. By matching the simulated flow fields to the different behavior zones, all scenarios were assessed for the passability of the target fishes, and the results showed that there would be different potential migration routes under each scenario. For the most common scenario during the fish passage season, symmetrical use of turbines T1 and T6 was recommended so that the flow would be lower velocity and the turbulence would be less intense near the fishway entrances than the current regime. Moreover, the addition of a new entrance was suggested on the migration routes with high potential use to increase the chance that fish would enter. Beyond providing a solution for this specific case, this study enriches knowledge about the swimming features of endemic fishes on the Tibetan Plateau. Furthermore, this research provides a possible technical methodology that combines fish behavioral characteristics and hydraulic indexes when determining attraction flows in similar fish passage projects.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China
| | - Ruidong An
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China.
| | - Jia Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China
| | - Kefeng Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China
| | - Fang Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Xu P, Xu J, Liu G, Chen L, Zhou Z, Peng W, Jiang Y, Zhao Z, Jia Z, Sun Y, Wu Y, Chen B, Pu F, Feng J, Luo J, Chai J, Zhang H, Wang H, Dong C, Jiang W, Sun X. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat Commun 2019; 10:4625. [PMID: 31604932 PMCID: PMC6789147 DOI: 10.1038/s41467-019-12644-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Common carp (Cyprinus carpio) is an allotetraploid species derived from recent whole genome duplication and provides a model to study polyploid genome evolution in vertebrates. Here, we generate three chromosome-level reference genomes of C. carpio and compare to related diploid Cyprinid genomes. We identify a Barbinae lineage as potential diploid progenitor of C. carpio and then divide the allotetraploid genome into two subgenomes marked by a distinct genome similarity to the diploid progenitor. We estimate that the two diploid progenitors diverged around 23 Mya and merged around 12.4 Mya based on the divergence rates of homoeologous genes and transposable elements in two subgenomes. No extensive gene losses are observed in either subgenome. Instead, we find gene expression bias across surveyed tissues such that subgenome B is more dominant in homoeologous expression. CG methylation in promoter regions may play an important role in altering gene expression in allotetraploid C. carpio. The common carp is derived from recent whole genome duplication and represents a model for polyploid genome evolution, rare in vertebrates. Here, the authors generate and analyse chromosome-level reference genomes for common carp, and describe subgenome gene expression changes.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Fengtai, Beijing, 100141, China. .,State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Fengtai, Beijing, 100141, China
| | - Guangjian Liu
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Fengtai, Beijing, 100141, China
| | - Zixia Zhao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Fengtai, Beijing, 100141, China
| | - Zhiying Jia
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150001, China
| | - Yonghua Sun
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jianxin Feng
- Henan Academy of Fishery Sciences, Zhengzhou, 450044, China
| | - Jing Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming, 650091, China
| | - Jing Chai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming, 650091, China
| | - Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Fengtai, Beijing, 100141, China
| | - Hui Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.,College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chuanju Dong
- College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100029, China
| | - Xiaowen Sun
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150001, China
| |
Collapse
|
25
|
Genetic and morphology analysis among the pentaploid F 1 hybrid fishes ( Schizothorax wangchiachii ♀ × Percocypris pingi ♂) and their parents. Animal 2019; 13:2755-2764. [PMID: 31148539 DOI: 10.1017/s1751731119001289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triploid and pentaploid breeding is of great importance in agricultural production, but it is not always easy to obtain double ploidy parents. However, in fishes, chromosome ploidy is diversiform, which may provide natural parental resources for triploid and pentaploid breeding. Both tetraploid and hexaploid exist in Schizothorax fishes, which were thought to belong to different subfamilies with tetraploid Percocypris fishes in morphology, but they are sister genera in molecule. Fortunately, the pentaploid hybrid fishes have been successfully obtained by hybridization of Schizothorax wangchiachii (♀, 2n = 6X = 148) × Percocypris pingi (♂, 2n = 4X = 98). To understand the genetic and morphological difference among the hybrid fishes and their parents, four methods were used in this study: morphology, karyotype, red blood cell (RBC) DNA content determination and inter-simple sequence repeat (ISSR). In morphology, the hybrid fishes were steady, and between their parents with no obvious preference. The chromosome numbers of P. pingi have been reported as 2n = 4X = 98. In this study, the karyotype of S. wangchiachii was 2n = 6X = 148 = 36m + 34sm + 12st + 66t, while that the hybrid fishes was 2n = 5X = 123 = 39m + 28sm + 5st + 51t. Similarly, the RBC DNA content of the hybrid fishes was intermediate among their parents. In ISSR, the within-group genetic diversity of hybrid fishes was higher than that of their parents. Moreover, the genetic distance of hybrid fishes between P. pingi and S.wangchiachii was closely related to that of their parental ploidy, suggesting that parental genetic material stably coexisted in the hybrid fishes. This is the first report to show a stable pentaploid F1 hybrids produced by hybridization of a hexaploid and a tetraploid in aquaculture.
Collapse
|
26
|
Guo XZ, Zhang GR, Wei KJ, Ji W, Yan RJ, Wei QW, Gardner JPA. Phylogeography of the threatened tetraploid fish, Schizothorax waltoni, in the Yarlung Tsangpo River on the southern Qinghai-Tibet Plateau: implications for conservation. Sci Rep 2019; 9:2704. [PMID: 30804376 PMCID: PMC6390103 DOI: 10.1038/s41598-019-39128-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/17/2019] [Indexed: 11/09/2022] Open
Abstract
The phylogeography of Schizothorax waltoni, an endemic and endangered tetraploid schizothoracine fish in the Yarlung Tsangpo River (YLTR) on southern margin of Qinghai-Tibet Plateau (QTP), was investigated using two mitochondrial DNA regions and eleven microsatellite loci. Analyses of concatenated sequences of cytochrome b (1141 bp) and the control region (712 bp) revealed high haplotype diversity and moderate nucleotide diversity. High genetic diversity was observed based on microsatellite variation. Both mtDNA and microsatellite analyses revealed significant genetic differentiation between the eastern population (Mainling) and the other four populations to the west, and non-significant genetic differentiation amongst the three central populations in the west. Significant genetic differentiation was observed between the western population (Shigatse) and the three central populations based on microsatellite analyses alone. Bayesian skyline plot analyses showed that S. waltoni experienced a pronounced population expansion 0.05 to 0.10 Ma. Hierarchical structure analyses of microsatellite data indicated that S. waltoni could be split into three groups (western, central and eastern YLTR). The results indicate that three management units should be considered for S. waltoni. Our findings highlight the need for the conservation and effective management of S. waltoni, which is a key member of the endemic and highly threatened fishes of the QTP.
Collapse
Affiliation(s)
- Xiang-Zhao Guo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, P. R. China.,Guangdong Haid Group Co., Ltd., Guangzhou, 511400, P. R. China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, P. R. China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, P. R. China. .,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, P. R. China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, P. R. China
| | - Ruo-Jin Yan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, P. R. China.,School of Biological Sciences, Victoria University of Wellington, P O Box 600, Wellington, 6140, New Zealand
| | - Qi-Wei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, P. R. China
| | - Jonathan P A Gardner
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, P. R. China.,School of Biological Sciences, Victoria University of Wellington, P O Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
27
|
The sequence and de novo assembly of Oxygymnocypris stewartii genome. Sci Data 2019; 6:190009. [PMID: 30720802 PMCID: PMC6362891 DOI: 10.1038/sdata.2019.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023] Open
Abstract
Animal genomes in the Qinghai-Tibetan Plateau provide valuable resources for scientists to understand the molecular mechanism of environmental adaptation. Tibetan fish species play essential roles in the local ecology; however, the genomic information for native fishes was still insufficient. Oxygymnocypris stewartii, belonging to Oxygymnocypris genus, Schizothoracinae subfamily, is a native fish in the Tibetan plateau living within the elevation from roughly 3,000 m to 4,200 m. In this report, PacBio and Illumina sequencing platform were used to generate ~385.3 Gb genomic sequencing data. A genome of about 1,849.2 Mb was obtained with a contig N50 length of 257.1 kb. More than 44.5% of the genome were identified as repetitive elements, and 46,400 protein-coding genes were annotated in the genome. The assembled genome can be used as a reference for future population genetic studies of O. stewartii and will improve our understanding of high altitude adaptation of fishes in the Qinghai-Tibetan Plateau.
Collapse
|
28
|
Convergent evolution misled taxonomy in schizothoracine fishes (Cypriniformes: Cyprinidae). Mol Phylogenet Evol 2019; 134:323-337. [PMID: 30641272 DOI: 10.1016/j.ympev.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022]
Abstract
Highly specialized grade (HSG; genera Gymnocypris, Oxygymnocypris, Schizopygopsis, Platypharodon and Chuanchia) of the Schizothoracinae (Cypriniformes: Cyprinidae) are endemic to the Qinghai-Tibet Plateau (QTP). Previously, two distinct ecomorphs were recognized according to trophic traits. One was a limnetic omnivore with normal lower jaw morphology, terminal mouth, and moderate or dense gill rakers, mostly inhabiting in open water of lakes, including Gymnocypris and Oxygymnocypris. Another was a benthic feeder with inferior mouth, sparse gill rakers and sharp horny sheath on the lower jaw for scraping of attached prey off hard substrates, including Schizopygopsis, Platypharodon and Chuanchia. However, traditional taxonomy of HSG based on these trophic traits presented extensive conflicts with the molecular studies in recent years. The possible cause could be convergent evolution in morphology, retention of ancestral polymorphisms or mitochondrial introgression, but these hypotheses could not be assessed due to incomplete taxon sampling and only mitochondrial data employed in previous works. Here, we conducted the most comprehensive molecular analysis on HSG fishes to date, using four mitochondrial loci and 152,464 genome-wide SNPs, and including 21 of 24 putative species and one undescribed Schizopygopsis species. Both SNP and mtDNA trees confirmed extensive paraphyly of genera Gymnocypris and Schizopygopsis, where species often were clustered together by watershed instead of by genus. Basal split into the north clade B and the south clade C (ca. 3.03 Ma) approximately by the Tanggula-Tanitawen Mountains in SLAF tree coincided with a violent uplift of the QTP during the phase A of 'Qingzang movement' (ca. 3.6 Ma). Ancestral state reconstruction of the trophic ecomorph showed that the limnetic omnivore ecomorph had evolved repeatedly in clade B and C. Furthermore, we presented a striking case of convergent evolution between two 'subspecies' Gymnocypris chui chui and G. chui longimandibularis, which had diverged as early as two million years ago (ca. 2.42 Ma). Ecological analyses revealed that similar food utilization, particularly in zooplankton, was the main underlying driving force. This work showed an example of taxonomy with the most extensive errors at the genus/species levels due to convergent evolution and suggested that trophic traits could be misleading in fish taxonomy. Therefore, we propose a major generic revision for HSG species.
Collapse
|
29
|
Adaptive Evolution of the Eda Gene and Scales Loss in Schizothoracine Fishes in Response to Uplift of the Tibetan Plateau. Int J Mol Sci 2018; 19:ijms19102953. [PMID: 30262767 PMCID: PMC6213870 DOI: 10.3390/ijms19102953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022] Open
Abstract
Schizothoracine is the predominant wild fish subfamily of the Tibetan plateau (TP). Their scales, pharyngeal teeth and barbels have gradually regressed with increasing altitude. Schizothoracine have been divided into three groups: primitive, specialized and highly specialized. Ectodysplasin-A (Eda) has been considered as a major gene that contributes to the development of skin appendages. The present study cloned the Eda genes of 51 Schizothoracine fish species which represent the three groups and five Barbinae species. Phylogenetic analyses indicated that Eda may have acted as the genetic trigger for scale loss in the Schizothoracine. Furthermore, 14 single nucleotide polymorphisms (SNPs) and two deletions (18 bp and 6 bp in size), were also detected in the Eda coding sequence of the highly specialized group compared to the primitive group. The same SNPs and two indels result in four non-synonymous and two G-X-Y and 1 XY motif indels, which possibly contribute to significant structure changes in the Eda gene. The domain including (G-X-Y)n motif in the Eda gene is relatively conserved amongst teleosts. Based on the above results, we hypothesize that the evolution of Eda gene might be associated with the scale loss in Schizothoracine fishes in response to the phased uplift of the TP.
Collapse
|
30
|
Saenjundaeng P, de Bello Cioffi M, de Oliveira EA, Tanomtong A, Supiwong W, Phimphan S, Collares-Pereira MJ, Sember A, Bertollo LAC, Liehr T, Yano CF, Hatanaka T, Ráb P. Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini. Mol Cytogenet 2018; 11:51. [PMID: 30202442 PMCID: PMC6123905 DOI: 10.1186/s13039-018-0399-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 12/01/2022] Open
Abstract
Background Polyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods. Results Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions. Conclusion Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
Collapse
Affiliation(s)
- Pasakorn Saenjundaeng
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Marcelo de Bello Cioffi
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Ezequiel Aguiar de Oliveira
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil.,Secretaria de Estado de Educação de Mato Grosso - SEDUC-MT, Cuiabá, MT Brazil
| | - Alongklod Tanomtong
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Weerayuth Supiwong
- 4Faculty of Applied Science and Engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai Thailand
| | - Sumalee Phimphan
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Maria João Collares-Pereira
- 5Faculdade de Ciencias, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Campo Grande, PT-1749-016 Lisbon, Portugal
| | - Alexandr Sember
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | | | - Thomas Liehr
- 7Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Cassia Fernanda Yano
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Terumi Hatanaka
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Petr Ráb
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| |
Collapse
|
31
|
Sember A, Bohlen J, Šlechtová V, Altmanová M, Pelikánová Š, Ráb P. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae). PLoS One 2018; 13:e0195054. [PMID: 29590207 PMCID: PMC5874072 DOI: 10.1371/journal.pone.0195054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Polyploidization has played an important role in the evolution of vertebrates, particularly at the base of Teleostei-an enormously successful ray-finned fish group with additional genome doublings on lower taxonomic levels. The investigation of post-polyploid genome dynamics might provide important clues about the evolution and ecology of respective species and can help to decipher the role of polyploidy per se on speciation. Few studies have attempted to investigate the dynamics of repetitive DNA sequences in the post-polyploid genome using molecular cytogenetic tools in fishes, though recent efforts demonstrated their usefulness. The demonstrably monophyletic freshwater loach family Botiidae, branching to evolutionary diploid and tetraploid lineages separated >25 Mya, offers a suited model group for comparing the long-term repetitive DNA evolution. For this, we integrated phylogenetic analyses with cytogenetical survey involving Giemsa- and Chromomycin A3 (CMA3)/DAPI stainings and fluorescence in situ hybridization with 5S/45S rDNA, U2 snDNA and telomeric probes in representative sample of 12 botiid species. The karyotypes of all diploids were composed of 2n = 50 chromosomes, while majority of tetraploids had 2n = 4x = 100, with only subtle interspecific karyotype differences. The exceptional karyotype of Botia dario (2n = 4x = 96) suggested centric fusions behind the 2n reduction. Variable patterns of FISH signals revealed cases of intraspecific polymorphisms, rDNA amplification, variable degree of correspondence with CMA3+ sites and almost no phylogenetic signal. In tetraploids, either additivity or loci gain/loss was recorded. Despite absence of classical interstitial telomeric sites, large blocks of interspersed rDNA/telomeric regions were found in diploids only. We uncovered different molecular drives of studied repetitive DNA classes within botiid genomes as well as the advanced stage of the re-diploidization process in tetraploids. Our results may contribute to link genomic approach with molecular cytogenetic analyses in addressing the origin and mechanism of this polyploidization event.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Šárka Pelikánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
32
|
Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau. G3-GENES GENOMES GENETICS 2017; 7:1267-1276. [PMID: 28209761 PMCID: PMC5386875 DOI: 10.1534/g3.116.038406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many species of Schizothoracine, a subfamily of Cyprinidae, are highly endemic to the Qinghai–Tibetan Plateau (QTP). To characterize the adaptive changes associated with the Schizothoracine expansion at high altitudes, we sequenced tissue transcriptomes of two highland and two subhighland Schizothoracines and analyzed gene evolution patterns by comparing with lowland cyprinids. Phylogenetic tree reconstruction and divergence time estimation indicated that the common ancestor of Schizothoracine fish lived ∼32.7 million years ago (MYA), coinciding with the timing of the first phase of QTP uplifting. Both high- and subhigh-Schizothoracines demonstrated elevated dN/dS ratios in the protein-coding genes compared to lowland cyprinids, from which some biological processes implicated in altitude adaptation were commonly identified. On the other hand, the highland and subhighland lineages presented drastically divergent landscapes of positively selected genes (PSGs), enriched with very different gene ontology (GO) profiles, including those in “sensory organ morphogenesis,” “regulation of protein ubiquitination,” “blood circulation,” and “blood vessel development.” These results indicated different selection pressures imposed on the highland and subhighland lineages of the Schizothoracine subfamily, with a higher number of genes in the high-altitude species involved in adaptations such as sensory perception, blood circulation, and protein metabolism. Our study indicated divergent genetic adaptations in the aquatic species facing the phased uplifting of QTP.
Collapse
|
33
|
Yu M, Zhang D, Hu P, Peng S, Li W, He S, Zhai W, Xu Q, Chen L. Divergent adaptation to Qinghai-Tibetan Plateau implicated from transciptome study of Gymnocypris dobula and Schizothorax nukiangensis. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|