1
|
Zhou Z, Wu B, Chen J, Shen Y, Wang J, Chen X, Fei F, Li L. ETV4 facilitates proliferation, migration, and invasion of liver cancer by mediating TGF-β signal transduction through activation of B3GNT3. Genes Genomics 2023; 45:1433-1443. [PMID: 37523127 DOI: 10.1007/s13258-023-01428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Metastasis of liver cancer (LC) is the main cause of its high mortality. ETV4 is a critical regulatory factor in promoting LC progression, but the mechanism that ETV4 impacts LC proliferation, migration, and invasion is poorly understood. OBJECTIVE Investigation of the molecular mechanism of LC metastasis is conducive to developing effective drugs that prevent LC metastasis. METHODS Expression of ETV4 and its target gene B3GNT3 in LC tissue was analyzed by bioinformatics, and the result was further verified in LC cells by qRT-PCR. In vitro cellular assays evaluated the impact of ETV4 on the proliferation, migration, and invasion of LC cells. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter gene assay were conducted to analyze the interaction between B3GNT3 and ETV4. SB525334 suppressor was used to treat and access the activation of ETV4 on the TGF-β pathway. RESULTS We discovered that ETV4 and B3GNT3 were evidently up-regulated in LC, and high expression of ETV4 was coupled to the increase of proliferation, migration, and invasion of LC cells and epithelial-mesenchymal transition ability. Besides, ETV4 could bind to the B3GNT3 promoter and activate its transcription. Knockdown of B3GNT3 could prominently suppress the effect of up-regulated ETV4 on LC cells. Meanwhile, ETV4 could activate the TGF-β signaling pathway via B3GNT3, while SB525334 treatment notably repressed the functions of ETV4. CONCLUSION ETV4 emerges as a driven oncogene in LC, and the ETV4/B3GNT3-TGF-β pathway promotes proliferation, migration, invasion, and epithelial-mesenchymal transition progress of LC. Inhibition of the pathway may provide an underlying method for the prevention and treatment of LC metastasis.
Collapse
Affiliation(s)
- Zhongcheng Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, 314000, Zhejiang Province, China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, 314000, Zhejiang Province, China
| | - Jing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, 314000, Zhejiang Province, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, 314000, Zhejiang Province, China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, 314000, Zhejiang Province, China
| | - Xujian Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, 314000, Zhejiang Province, China
| | - Faming Fei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, 1518 Huancheng North Road, Jiaxing, 314000, Zhejiang Province, China
| | - Liang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No 1882 Zhonghuan south road, Jiaxing, 314000, Zhejiang Province, China.
| |
Collapse
|
2
|
Zhang M, Ding Q, Bian C, Su J, Xin Y, Jiang X. Progress on the molecular mechanism of portal vein tumor thrombosis formation in hepatocellular carcinoma. Exp Cell Res 2023; 426:113563. [PMID: 36944406 DOI: 10.1016/j.yexcr.2023.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, with poor prognosis and high mortality. Early-stage HCC has no obvious clinical symptoms, and most patients are already at an advanced stage when they are diagnosed. Portal vein tumor thrombus (PVTT) is the most common complication and a poor prognostic factor for HCC, which frequently leads to portal vein hypertension, ascites, gastrointestinal bleeding, and tumor metastasis. The formation of PVTT is related to the complex structure and hemodynamic changes of the portal vein and is closely related to changes at the cellular and molecular levels. The differentially-expressed genes (DEGs) between PVTT and primary tumor (PT) suggest that the two tissues may have different clonal origins. Epigenetic and proteomic analyses also suggest complex and diverse mechanisms for the formation of PVTT. In addition, the tumor microenvironment and energy metabolism pathways are interrelated in regulating the invasion and progression of PVTT. Aerobic glycolysis and the tumor immune microenvironment have been the focus of recent studies on PVTT. In this review, we summarize the mechanism of PVTT formation at the cellular and molecular levels to provide information to guide better prevention and treatment of PVTT in the clinic.
Collapse
Affiliation(s)
- Min Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Qiuhui Ding
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Nishida T, Kataoka H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1339. [PMID: 31510063 PMCID: PMC6770328 DOI: 10.3390/cancers11091339] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is an oncofetal glycoprotein attached to the cell membrane by a glycophosphatidylinositol anchor. GPC3 is overexpressed in some kinds of tumors, particularly hepatocellular carcinoma (HCC). The prognostic significance of serum GPC3 levels and GPC3 immunoreactivity in tumor cells has been defined in patients with HCC. In addition to its usefulness as a biomarker, GPC3 has attracted attention as a novel therapeutic target molecule, and clinical trials targeting GPC3 are in progress. The major mechanism of anti-GPC3 antibody (GPC3Ab) against cancer cells is antibody-dependent cellular cytotoxicity and/or complement-dependent cytotoxicity. Since GPC3Ab is associated with immune responses, a combination of protocols with immune checkpoint inhibitors has also been investigated. Moreover, some innovative approaches for GPC3-targeting therapy have emerged in recent years. This review introduces the results of recent clinical trials targeting GPC3 in HCC and summarizes the latest knowledge regarding the role of GPC3 in HCC progression and clinical application targeting GPC3.
Collapse
Affiliation(s)
- Takahiro Nishida
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
- Division of Gastrointestinal, Endocrine and Pediatric Surgery, Department of Surgery, University of Miyazaki Faculty of Medicine, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
4
|
Enrichment of AT-TA transversion at 5'-CAG-3' motif is not a unique mutational signature of aristolochic acid. SCIENCE CHINA-LIFE SCIENCES 2019; 62:974-977. [PMID: 31187304 DOI: 10.1007/s11427-019-9566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
5
|
The Nutritional Cytokine Leptin Promotes NSCLC by Activating the PI3K/AKT and MAPK/ERK Pathways in NSCLC Cells in a Paracrine Manner. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2585743. [PMID: 31119158 PMCID: PMC6500706 DOI: 10.1155/2019/2585743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/26/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022]
Abstract
Purpose Leptin is a nutritional cytokine encoded by the obesity gene whose concentration in the tumor microenvironment is closely related to the occurrence and progression of cancer. However, previous evidence has suggested that there is no clear relationship between serum leptin concentrations and lung cancer progression. Cancer-associated fibroblasts (CAFs), the most abundant component of the tumor microenvironment in a variety of solid tumors, were recently reported to produce leptin. Therefore, it was inferred that leptin is most likely to affect non-small-cell lung cancer (NSCLC) through an autocrine and paracrine mechanism. In the current study, we investigated the paracrine effect and mechanism of leptin produced by CAFs on NSCLC by establishing a novel in vitro cell coculture system. Methods A noncontact coculture device was designed and made by 3D printing. CAFs and paired normal lung fibroblasts (NLFs) from 5 patients were successfully isolated and cocultured with two NSCLC cell lines in a coculture system. The background expression of leptin was detected by western blot. The in situ expression of leptin and its receptor (Ob-R) in NSCLC tissues and paired normal lung tissues was analyzed by immunohistochemistry. Furthermore, we downregulated the expression of leptin in CAFs and assessed changes in its promotion on NSCLC cells in the coculture system. Finally, changes in the phosphorylation of ERK1/2 and AKT were examined to investigate the molecular mechanisms responsible for the paracrine promotion of NSCLC cells by leptin. Results Leptin was overexpressed in nearly all five primary CAF lines compared with its expression in paired NLFs. IHC staining showed that the expression of leptin was high in NSCLC cells, slightly lower in CAF, and negative in normal lung tissue. Ob-R was strongly expressed in NSCLC cells. The ability of A549 and H1299 cells to proliferate and migrate was enhanced by high leptin levels in both the cocultured fibroblasts and the culture medium. Furthermore, western blot assays suggested that the MAPK/ERK1/2 and PI3K/AKT signaling pathways were activated by leptin produced by CAFs, which demonstrated that the functions of paracrine leptin in NSCLC are as those of the serum leptin to other cancers. Conclusion Leptin produced by CAF promotes proliferation and migration of NSCLC cells probably via PI3K/AKT and MAPK/ERK1/2 signaling pathways in a paracrine manner.
Collapse
|