1
|
Yi SC, Yu JL, Abdelkhalek ST, Sun ZR, Wang MQ. Identification and odor exposure regulation of odorant-binding proteins in Picromerus lewisi. Front Physiol 2024; 15:1503440. [PMID: 39697614 PMCID: PMC11652525 DOI: 10.3389/fphys.2024.1503440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
The highly developed sensitive olfactory system is essential for Picromerus lewisi Scott (Hemiptera: Pentatomidae) adults, an widely distributed natural predatory enemy, to locate host plants. During this process, odorant-binding proteins (OBPs) are thought to have significant involvement in the olfactory recognition. However, the roles of OBPs in the olfactory perception of P. lewisi are not frequently reported. Here, we conducted odor exposure and transcriptome sequencing experiments using healthy and Spodoptera litura-infested tobacco plants as odor sources. The transcriptomic data revealed that the alteration in the expression of mRNA levels upon exposure to odor was sex-dependent. As the expression profiles differed significantly between male and female adults of P. lewisi. A total of 15 P. lewisi OBPs (PlewOBPs) were identified from the P. lewisi transcriptome. Sequence and phylogenetic analysis indicated that PlewOBPs can be classified into two subfamilies (classic OBP and plus-C OBP). The qRT-PCR results showed that the transcript abundance of 8 PlewOBPs substantially altered following exposure to S. litura-infested tobacco plants, compared to the blank control or healthy plants. This implies that these PlewOBPs may have an olfactory function in detecting S. litura-infested tobacco plants. This study establishes the foundation for further understanding of the olfactory recognition mechanism of P. lewisi and helps discover novel targets for functional characterization in future research.
Collapse
Affiliation(s)
- Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Ling Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Zhi-Rong Sun
- Southwest Guizhou Autonomous Prefecture Tobacco Company, Xingren, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Mu YP, Chen DY, Liu YJ, Zhu MY, Zhang X, Tang Y, Lin JL, Wang MY, Shangguan XX, Chen XY, Wang C, Mao YB. Mirids secrete a TOPLESS targeting protein to enhance JA-mediated defense and gossypol accumulation for antagonizing cotton bollworms on cotton plants. MOLECULAR PLANT 2024; 17:1687-1701. [PMID: 39318096 DOI: 10.1016/j.molp.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests. We identified a secretory protein, ASP1, from the oral secretion of mirids, found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional co-repressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having limited impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.
Collapse
Affiliation(s)
- Yu-Pei Mu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dian-Yang Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming-Yu Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yin Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Ling Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Xia Shangguan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
3
|
Yao H, Gao S, Sun T, Zhou G, Lu C, Gao B, Chen W, Liang Y. Transcriptomic analysis of the defense response in "Cabernet Sauvignon" grape leaf induced by Apolygus lucorum feeding. PLANT DIRECT 2024; 8:e590. [PMID: 38779180 PMCID: PMC11108798 DOI: 10.1002/pld3.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
To investigate the molecular mechanism of the defense response of "Cabernet Sauvignon" grapes to feeding by Apolygus lucorum, high-throughput sequencing technology was used to analyze the transcriptome of grape leaves under three different treatments: feeding by A. lucorum, puncture injury, and an untreated control. The research findings indicated that the differentially expressed genes were primarily enriched in three aspects: cellular composition, molecular function, and biological process. These genes were found to be involved in 42 metabolic pathways, particularly in plant hormone signaling metabolism, plant-pathogen interaction, MAPK signaling pathway, and other metabolic pathways associated with plant-induced insect resistance. Feeding by A. lucorum stimulated and upregulated a significant number of genes related to jasmonic acid and calcium ion pathways, suggesting their crucial role in the defense molecular mechanism of "Cabernet Sauvignon" grapes. The consistency between the gene expression and transcriptome sequencing results further supports these findings. This study provides a reference for the further exploration of the defense response in "Cabernet Sauvignon" grapes by elucidating the expression of relevant genes during feeding by A. lucorum.
Collapse
Affiliation(s)
- Heng Yao
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyChangliHebeiChina
- Hebei Key Laboratory of Crop Stress Biology (in Preparation)ChangliHebeiChina
| | - Suhong Gao
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyChangliHebeiChina
- Hebei Key Laboratory of Crop Stress Biology (in Preparation)ChangliHebeiChina
| | - Tianhua Sun
- College of ForestryHebei Agricultural UniversityBaodingHebeiChina
| | - Guona Zhou
- College of ForestryHebei Agricultural UniversityBaodingHebeiChina
| | - Changkuan Lu
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyChangliHebeiChina
| | - Baojia Gao
- College of ForestryHebei Agricultural UniversityBaodingHebeiChina
| | - Wenshu Chen
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyChangliHebeiChina
- Hebei Key Laboratory of Crop Stress Biology (in Preparation)ChangliHebeiChina
| | - Yiming Liang
- College of Agronomy and BiotechnologyHebei Normal University of Science and TechnologyChangliHebeiChina
- Hebei Key Laboratory of Crop Stress Biology (in Preparation)ChangliHebeiChina
| |
Collapse
|
4
|
Expression of Modified Snowdrop Lectin ( Galanthus nivalis Agglutinin) Protein Confers Aphids and Plutella xylostella Resistance in Arabidopsis and Cotton. Genes (Basel) 2022; 13:genes13071169. [PMID: 35885952 PMCID: PMC9316576 DOI: 10.3390/genes13071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Cotton is a major fiber crop in the world that can be severely infested by pests in agricultural fields. Identifying new insect-resistance genes and increasing the expression of known insect-resistance genes are imperative in cultivated cotton. Galanthus nivalis agglutinin (GNA), a lectin that is toxic to both chewing and sucking pests, is mainly expressed in monocotyledons. It is necessary to improve the expression of the GNA protein and to test whether the lectin confers insect resistance to dicotyledons plants. We report a modified GNA gene (ASGNA) via codon optimization, its insertion into Arabidopsis thaliana, and transient expression in cotton to test its efficacy as an insect-resistance gene against cotton aphids and Plutella xylostella. The amount of ASGNA in transgenic plants reached approximately 6.5 μg/g of fresh weight. A feeding bioassay showed that the survival rate of aphids feeding on the leaves of ASGNA transgenic plants was lower than those of aphids feeding on the leaves of non-optimized GNA (NOGNA) transgenic plants and wild-type plants. Meanwhile, the fertility rate was 36% when fed on the ASGNA transgenic plants, while the fertility was 70% and 95% in NOGNA transgenic plants and wild-type plants. Correspondingly, the highest mortality of 55% was found in ASGNA transgenic lines, while only 35% and 20% mortality was observed in NOGNA transgenic plants and wild-type plants, respectively. Similar results were recorded for aphids feeding on cotton cotyledons with transient expression of ASGNA. Taken together, the results show that ASGNA exhibited high insecticidal activity towards sap-sucking insects and thus is a promising candidate gene for improving insect resistance in cotton and other dicotyledonous plants.
Collapse
|
5
|
Cao JF, Huang JQ, Liu X, Huang CC, Zheng ZS, Zhang XF, Shangguan XX, Wang LJ, Zhang YG, Wendel JF, Grover CE, Chen ZW. Genome-wide characterization of the GRF family and their roles in response to salt stress in Gossypium. BMC Genomics 2020; 21:575. [PMID: 32831017 PMCID: PMC7444260 DOI: 10.1186/s12864-020-06986-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/12/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) is the most important world-wide fiber crop but salt stress limits cotton production in coastal and other areas. Growth regulation factors (GRFs) play regulatory roles in response to salt stress, but their roles have not been studied in cotton under salt stress. RESULTS We identified 19 GRF genes in G. raimondii, 18 in G. arboreum, 34 in G. hirsutum and 45 in G. barbadense, respectively. These GRF genes were phylogenetically analyzed leading to the recognition of seven GRF clades. GRF genes from diploid cottons (G. raimondii and G. arboreum) were largely retained in allopolyploid cotton, with subsequent gene expansion in G. barbadense relative to G. hirsutum. Most G. hirsutum GRF (GhGRF) genes are preferentially expressed in young and growing tissues. To explore their possible role in salt stress, we used qRT-PCR to study expression responses to NaCl treatment, showing that five GhGRF genes were down-regulated in leaves. RNA-seq experiments showed that seven GhGRF genes exhibited decreased expression in leaves under NaCl treatment, three of which (GhGRF3, GhGRF4, and GhGRF16) were identified by both RNA-seq and qRT-PCR. We also identified six and three GRF genes that exhibit decreased expression under salt stress in G. arboreum and G. barbadense, respectively. Consistent with its lack of leaf withering or yellowing under the salt treatment conditions, G. arboreum had better salt tolerance than G. hirsutum and G. barbadense. Our results suggest that GRF genes are involved in salt stress responses in Gossypium. CONCLUSION In summary, we identified candidate GRF genes that were involved in salt stress responses in cotton.
Collapse
Affiliation(s)
- Jun-Feng Cao
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- Plant Stress Biology Center, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jin-Quan Huang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xia Liu
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Chao-Chen Huang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210 China
| | - Zi-Shou Zheng
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiu-Fang Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xiao-Xia Shangguan
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ling-Jian Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yu-Gao Zhang
- Esquel Group, 25 Harbour Road, Wanchai, Hong Kong, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Zhi-Wen Chen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009 China
| |
Collapse
|
6
|
Luo J, Wang A, Cheng Y, Rong H, Guo L, Peng Y, Xu L. Selection and Validation of Suitable Reference Genes for RT-qPCR Analysis in Apolygus lucorum (Hemiptera: Miridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:451-460. [PMID: 31773146 DOI: 10.1093/jee/toz301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Apolygus lucorum (Meyer-Dür) is a destructive pest to >280 plants. Major economic significance and pesticide resistance issues have created a need for integrated pest management (e.g., RNAi, entomopathogen-based bioinsecticides) for A. lucorum. To better develop these control strategies, large-scale genetic studies involving gene-expression analysis are required and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the most commonly used method. However, there have been no reports on appropriate reference genes in A. lucorum. Here, we evaluated nine widely utilized reference genes including EF1γ, RPL32, RPL27, SDH, TBP, ACT, ACT2, GAPDH, and βTUB for their expression stabilities in A. lucorum under five different conditions i.e., life stage, tissue, sex, dsRNA injection, and entomopathogen infection. Based on the gene stability ranking calculated by RefFinder, which integrates four algorithms (geNorm, delta Ct method, NormFinder, and BestKeeper), we recommend RPL27 and RPL32 as the most appropriate reference genes for molecular studies in different life stages and tissues; GAPDH and EF1γ for different sexes and entomopathogen infection studies; and RPL27 and EF1γ for RNAi studies. The results of this study will help improve the accuracy and reliability for normalizing the RT-qPCR data for further molecular analysis in A. lucorum.
Collapse
Affiliation(s)
- Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanxia Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Haoling Rong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Libin Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Chen FY, Chen XY, Mao YB. Heterogeneous signals in plant-biotic interactions and their applications. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1707-1709. [PMID: 31782081 DOI: 10.1007/s11427-019-1577-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Fang-Yan Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Xiao-Ya Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
8
|
Ren M, Zafar MM, Mo H, Yang Z, Li F. Fighting against fall armyworm by using multiple genes pyramiding and silencing (MGPS) technology. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1703-1706. [PMID: 31782080 DOI: 10.1007/s11427-019-1586-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Mubashar Zafar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Huijuan Mo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China.
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
9
|
An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci U S A 2019; 116:14331-14338. [PMID: 31221756 PMCID: PMC6628814 DOI: 10.1073/pnas.1905471116] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Insects have evolved effectors to conquer plant defense. Most known insect effectors are isolated from sucking insects, and examples from chewing insects are limited. Moreover, the targets of insect effectors in host plants remain unknown. Here, we address a chewing insect effector and its working mechanism. Cotton bollworm (Helicoverpa armigera) is a lepidopteran insect widely existing in nature and severely affecting crop productivity. We isolated an effector named HARP1 from H. armigera oral secretion (OS). HARP1 was released from larvae to plant leaves during feeding and entered into the plant cells through wounding sites. Expression of HARP1 in Arabidopsis mitigated the global expression of wounding and jasmonate (JA) responsive genes and rendered the plants more susceptible to insect feeding. HARP1 directly interacted with JASMONATE-ZIM-domain (JAZ) repressors to prevent the COI1-mediated JAZ degradation, thus blocking JA signaling transduction. HARP1-like proteins have conserved function as effectors in noctuidae, and these types of effectors might contribute to insect adaptation to host plants during coevolution.
Collapse
|
10
|
Manipulation of biotic signaling: a new theory for smarter pest control. SCIENCE CHINA-LIFE SCIENCES 2017; 60:781-784. [DOI: 10.1007/s11427-017-9148-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 10/19/2022]
|