1
|
Xu Z, Zhou X, Zhao X, Lu X, Wang H. Effectiveness of in vivo T-cell-depleted regimen containing porcine anti-lymphocyte globulin or rabbit anti-thymocyte globulin in preventing acute graft-versus-host disease after haploidentical haematopoietic stem cell transplantation. Br J Haematol 2024; 204:283-291. [PMID: 37984846 DOI: 10.1111/bjh.19205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
To compare the clinical efficacy of porcine anti-lymphocyte globulin (p-ALG) and rabbit anti-thymocyte globulin (r-ATG) in the treatment of haematological malignancies using haploidentical haematopoietic stem cell transplantation (haplo-HSCT), this study was conducted. The incidences of neutrophil and platelet engraftment, respectively, were 100%, 93.6% and 94.4%; 100%, 93.6% and 90.3% in p-ALG 75 mg/kg (n = 57), p-ALG 90 mg/kg (n = 49), and r-ATG 7.5 mg/kg (n = 72). The median time to neutrophil engraftment and platelet engraftment were 11, 12 and 12 days (p = 0.032); 13, 14 and 13 days (p = 0.013), respectively. The incidence of grades II-IV acute graft-versus-host disease and cumulative incidence of chronic graft-versus-host disease were 16.7% versus 12.5% versus 13.3% (p = 0.817) and 14.7% versus 12.1% versus 19.5% in p-ALG 75 mg/kg, p-ALG 90 mg/kg and r-ATG groups. Notably, the cytomegalovirus infection rate in the p-ALG 75 mg/kg group was significantly lower than the other two groups. The cumulative incidence of 2-year relapse and 2-year overall survival rates were similar (p = 0.901, p = 0.497). The lower dose of p-ALG (75 mg/kg) had a similar efficacy and safety profile compared with r-ATG (7.5 mg/kg) in the setting of haplo-HSCT. Therefore, p-ALG (75 mg/kg) may be an appropriate alternative to r-ATG in the conditioning regimen of haplo-HSCT.
Collapse
Affiliation(s)
- Ziwei Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhou
- Institute of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Shang QN, Yu XX, Xu ZL, Chen YH, Han TT, Zhang YY, Lv M, Sun YQ, Wang Y, Xu LP, Zhang XH, Zhao XY, Huang XJ. Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection. Cell Mol Immunol 2023; 20:895-907. [PMID: 37291236 PMCID: PMC10387476 DOI: 10.1038/s41423-023-01046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation remains a common complication and leads to high mortality in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Early natural killer (NK) cell reconstitution may protect against the development of human CMV (HCMV) infection post-HSCT. Our previous data showed that ex vivo mbIL21/4-1BBL-expanded NK cells exhibited high cytotoxicity against leukemia cells. Nevertheless, whether expanded NK cells have stronger anti-HCMV function is unknown. Herein, we compared the anti-HCMV functions of ex vivo expanded NK cells and primary NK cells. Expanded NK cells showed higher expression of activating receptors, chemokine receptors and adhesion molecules; stronger cytotoxicity against HCMV-infected fibroblasts; and better inhibition of HCMV propagation in vitro than primary NK cells. In HCMV-infected humanized mice, expanded NK cell infusion resulted in higher NK cell persistence and more effective tissue HCMV elimination than primary NK cell infusion. A clinical cohort of 20 post-HSCT patients who underwent adoptive NK cell infusion had a significantly lower cumulative incidence of HCMV infection (HR = 0.54, 95% CI = 0.32-0.93, p = 0.042) and refractory HCMV infection (HR = 0.34, 95% CI = 0.18-0.65, p = 0.009) than controls and better NK cell reconstitution on day 30 post NK cell infusion. In conclusion, expanded NK cells exhibit stronger effects than primary NK cells against HCMV infection both in vivo and in vitro.
Collapse
Affiliation(s)
- Qian-Nan Shang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Zhao X, Peng T, Cao X, Hou Y, Li R, Han T, Fan Z, Zhao M, Chang Y, Chen H, Li C, Huang X. In vivo G-CSF treatment activates the GR-SOCS1 axis to suppress IFN-γ secretion by natural killer cells. Cell Rep 2022; 40:111342. [PMID: 36103837 DOI: 10.1016/j.celrep.2022.111342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that are involved in controlling tumors or microbial infections through the production of interferon gamma (IFN-γ). Granulocyte colony-stimulating factor (G-CSF) inhibits IFN-γ secretion by NK cells, but the mechanism underlying this effect remains unclear. Here, by comparing the multi-omics profiles of human NK cells before and after in vivo G-CSF treatment, we identify a pathway that is activated in response to G-CSF treatment, which suppresses IFN-γ secretion in NK cells. Specifically, glucocorticoid receptors (GRs) activated by G-CSF inhibit secretion of IFN-γ by promoting interactions between SOCS1 promoters and enhancers, as well as increasing the expression of SOCS1. Experiments in mice confirm that G-CSF treatment significantly downregulates IFN-γ secretion and upregulates GR and SOCS1 expression in NK cells. In addition, GR blockade by the antagonist RU486 significantly reverses the effects of G-CSF, demonstrating that GRs upregulate SOCS1 and inhibit the production of IFN-γ by NK cells.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting Peng
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Xunhong Cao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingping Hou
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China
| | - Ruifeng Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Tingting Han
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zeying Fan
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ming Zhao
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yingjun Chang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hebin Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing, China.
| | - Xiaojun Huang
- Peking University People's Hospital, National Clinical Research Center for Hematologic Disease, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
4
|
Shang QN, Yu XX, Xu ZL, Cao XH, Liu XF, Zhao XS, Chang YJ, Wang Y, Zhang XH, Xu LP, Liu KY, Huang XJ, Zhao XY. Functional Competence of NK Cells via the KIR/MHC Class I Interaction Correlates with DNAM-1 Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:492-500. [PMID: 34937746 DOI: 10.4049/jimmunol.2100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
The interaction of inhibitory receptors with self-MHC class I (MHC-I) molecules is responsible for NK cell education. The intensity of DNAM-1 expression correlates with NK cell education. However, whether DNAM-1 expression directly influences the functional competence of NK cells via the KIR/MHC-I interaction remains unclear. Based on allogeneic haploidentical hematopoietic stem cell transplantation, we investigated the intensity of DNAM-1 expression on reconstituted NK cells via the interaction of KIR with both donor HLA and recipient HLA at days 30, 90, and 180 after hematopoietic stem cell transplantation. The reconstituted NK cells educated by donor and recipient HLA molecules showed the highest DNAM-1 expression, whereas DNAM-1 expression on educated NK cells with only recipient HLA molecules was higher than that on educated NK cells with only donor HLA molecules, indicating that NK cells with donor or recipient HLA molecules regulate DNAM-1 expression and thereby affect NK cell education. Additionally, the effects of recipient cells on NK cell education were greater than those of donor cells. However, only when the DNAM-1, NKP30, and NKG2D receptors were blocked simultaneously was the function of educated and uneducated NK cells similar. Therefore, activating receptors may collaborate with DNAM-1 to induce educated NK cell hyperresponsiveness. Our data, based on in vitro and in vivo studies, demonstrate that the functional competence of NK cells via the KIR/MHC-I interaction correlates with DNAM-1 expression in human NK cells.
Collapse
Affiliation(s)
- Qian-Nan Shang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China; and
| | - Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China; and
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xun-Hong Cao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xue-Fei Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China; and
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China; and
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Beijing, China; .,Collaborative Innovation Center of Hematology, Beijing, China
| |
Collapse
|
5
|
Yu XX, Shang QN, Liu XF, He M, Pei XY, Mo XD, Lv M, Han TT, Huo MR, Zhao X, Chang YJ, Wang Y, Zhang XH, Xu LP, Liu KY, Zhao X, Huang X. Donor NKG2C homozygosity contributes to CMV clearance after haploidentical transplantation. JCI Insight 2022; 7:149120. [PMID: 34990406 PMCID: PMC8855817 DOI: 10.1172/jci.insight.149120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Cytomegalovirus (CMV) infection remains an important cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Several investigators have reported that adaptive NKG2C+ NK cells persistently expand during CMV reactivation. In our study, two cohorts were enrolled to explored the relationships among the NKG2C genotype, NKG2C+ NK cell reconstitution, and CMV infection. Multivariate analysis showed that donor NKG2C gene deletion was an independent prognostic factor for CMV reactivation and refractory CMV reactivation. Furthermore, the quantitative, qualitative reconstitution and anti-CMV function of adaptive NKG2C+ NK cells after transplantation was significantly lower in patients grafted with NKG2Cwt/del donor cells than in those grafted with NKG2Cwt/wt donor cells. The quantitative reconstitution of NKG2C+ NK cells at day 30 after transplantation was significantly lower in patients with treatment-refractory CMV reactivation than in those in the no-CMV-reactivation and CMV-reactivation groups. In humanized CMV-infected mice, we found that compared with those from NKG2Cwt/del donors, adaptive NKG2C+ NK cells from NKG2Cwt/wt donors induced earlier and stronger expansion of NKG2C+ NK cells and earlier and stronger CMV clearance in vivo. In conclusion, donor NKG2C homozygosity contributes to CMV clearance by promoting the quantitative and qualitative reconstruction of adaptive NKG2C+ NK cells after haploidentical allo-HSCT.
Collapse
Affiliation(s)
- Xing-Xing Yu
- Center for Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Qian-Nan Shang
- Center for Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xue-Fei Liu
- Center for Life Sciences, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Mei He
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xu-Ying Pei
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Dong Mo
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Meng Lv
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Ting-Ting Han
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Ming-Rui Huo
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiaosu Zhao
- Peking University Institute of Hematology, Peking Unversity People's Hospital, Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking Unversity People's Hospital, Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Kai-Yan Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiangyu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Xiaojun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
6
|
He H, Yang T, Li F, Zhang L, Ling X. A novel study on the immunomodulatory effect of umbilical cord derived mesenchymal stem cells pretreated with traditional Chinese medicine Asarinin. Int Immunopharmacol 2021; 100:108054. [PMID: 34492537 DOI: 10.1016/j.intimp.2021.108054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) remains the key for the treatment of malignant hematological diseases, and acute graft-versus-host disease (aGVHD) that might occur after allogenic transplantation can be life threatening and promote disease recurrence. GVHD damages the various parts of the body by upregulating T helper 1 cytokines (Th1) cytokines and stimulating CD4、CD8 + T cells. GVHD can exhibit significant immunoregulatory effects, but could be easily affected by the mesenchymal stem cells (MSC) environment, and hence the MSC immunosuppressive effects on GVHD remain unpredictable. Hence, to better understand the role of MSC in the prevention and treatment of GVHD, umbilical cord derived mesenchymal stem cells (UC-MSC) were pre-treated with Chinese medicine Asarinin and IFN-γ. In the mix lymphocyte reaction, we found that Asarinin pre-treated UC-MSC can exert significantly greater inhibition towards the proliferation of CD4 and CD8 + T cells, down-regulate Th1 type cytokines, up-regulate Th2 type cytokines, and reduce the inflammatory damage to liver, lung and intestine of aGVHD mice model. Moreover, Asarinin can cooperate with IFN-γto promote UC-MSC to secrete indoleamine 2,3-dioxygenase (IDO). Our findings establish that Asarinin pre-treated UC-MSC can significantly promote the immunosuppressive effects of MSC on aGVHD after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Haiping He
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China.
| | - Tonghua Yang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China
| | - Fan Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| | - Lihua Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| | - Xiaosui Ling
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Clinical Medical Center, Kunming, China; Yunnan Blood Disease Hospital, Kunming, China; Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Zhou Y, Cao L, Guo H, Hong Y, Wang M, Wang K, Huang X, Chang Y. Th2 polarization in target organs is involved in the alleviation of pathological damage mediated by transplanting granulocyte colony-stimulating factor-primed donor T cells. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1087-1096. [PMID: 32880861 DOI: 10.1007/s11427-020-1754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is caused by allo-activated donor T cells infiltrating target organs. As a regulator of immune function, granulocyte colony-stimulating factor (G-CSF) has been demonstrated to relieve the aGVHD reaction. However, the role of G-CSF-primed donor T cells in specific target organs is still unknown. In this study, we employed a classical MHC-mismatched transplantation mouse model (C57BL/6 into BALB/c) and found that recipient mice transplanted with G-CSF-primed T cells exhibited prolonged survival compared with that of the PBS-treated group. This protective function against GVHD mediated by G-CSF-primed donor T cells was further confirmed by decreased clinical and pathological scores in this aGVHD mouse model, especially in the lung and gut. Moreover, we found that T cells polarized towards Th2 cells and regulatory T cells were increased in specific target organs. In addition, G-CSF treatment inhibited inducible co-stimulator (ICOS) expression and increased the expression of tolerance-related genes in recipient mice. Our study provides new insight into the immune regulatory effects of G-CSF on T cell-mediated aGVHD, especially for its precise regulation in GVHD target organs.
Collapse
Affiliation(s)
- Yang Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Leqing Cao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Huidong Guo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ke Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China.
| |
Collapse
|
8
|
Arsenic trioxide alleviates acute graft-versus-host disease by modulating macrophage polarization. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1744-1754. [DOI: 10.1007/s11427-019-1691-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022]
|
9
|
CD49a +CD49b + NK cells induced by viral infection reflect an activated state of conventional NK cells. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1725-1733. [PMID: 32335843 DOI: 10.1007/s11427-019-1665-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/26/2020] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are important innate effectors that play a pivotal role in the defense against tumors and infections and participate in regulating adaptive immunity. Recent studies have revealed phenotypic and functional heterogeneity of NK cells. Here, using murine models of acute and chronic lymphocytic choriomeningitis virus infection, we observed that a CD49a+ CD49b+ NK cell subset emerged in the liver and other tissues, and underwent vigorous expansion following viral infection, before progressively decreasing in cell number. These viral infection-induced CD49a+CD49b+ NK cells displayed an activated and mature phenotype. Moreover, compared with liver-resident NK cells and conventional NK (cNK) cells, CD49a+CD49b+ NK cells showed increased functional competence, as evidenced by higher amounts of IFN-γ production and stronger cytotoxic capabilities during viral infection. Generation of these CD49a+CD49b+ NK cells was shown to be independent of the T-bet transcription factor. Adoptive transfer experiments revealed that cNK cells could convert into CD49a+CD49b+ NK cells following viral infection. Collectively, these results suggest that viral infection-induced CD49a+CD49b+ NK cells represent a transiently activated state of cNK cells.
Collapse
|
10
|
Tang F, Mo X, Zhang X, Wang Y, Yan C, Chen Y, Chen H, Han W, Chen Y, Wang F, Wang J, Sun Y, Zhang Y, Liu K, Huang X, Xu L. Influence of the degree of donor bone marrow hyperplasia on patient clinical outcomes after allogeneic hematopoietic stem cell transplantation. SCIENCE CHINA. LIFE SCIENCES 2020; 63:138-147. [PMID: 31432375 DOI: 10.1007/s11427-018-9509-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/05/2019] [Indexed: 01/05/2023]
Abstract
This study evaluated the influence of the degree of donor bone marrow (BM) hyperplasia on patient clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Twelve patients received allo-HSCT from hypoplastic BM donors between January 2010 and December 2017. Forty-eight patients whose donors demonstrated BM hyperplasia were selected using a propensity score matching method (1:4). Primary graft failure including poor graft function and graft rejection did not occur in two groups. In BM hypoplasia and hyperplasia groups, the cumulative incidence (CI) of neutrophil engraftment at day 28 (91.7% vs. 93.8%, P=0.75), platelet engraftment at day 150 (83.3% vs. 93.8%, P=0.48), the median time to myeloid engraftment (14 days vs. 14 days, P=0.85) and platelet engraftment (14 days vs. 14 days, P=0.85) were comparable. The 3-year progression-free survival, overall survival, CI of non-relapse mortality and relapse were 67.8% vs. 71.7% (P=0.98), 69.8% vs. 77.8% (P=0.69), 18.5% vs. 13.6% (P=0.66), and 10.2% vs. 10.4% (P=0.82), respectively. In multivariate analysis, donor BM hypoplasia did not affect patient clinical outcomes after allo-HSCT. If patients have no other suitable donor, a donor with BM hypoplasia can be used for patients receiving allo-HSCT if the donor Complete Blood Count and other examinations are normal.
Collapse
Affiliation(s)
- Feifei Tang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Xiaodong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Chenhua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Yuhong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Huan Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Yao Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Fengrong Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Jingzhi Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Yuqian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Kaiyan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.
| |
Collapse
|
11
|
Tang F, Xu Y, Chen H, Xu L, Zhang X, Wang Y, Liu Q, Wu D, Huang X. Comparison of the clinical outcomes of hematologic malignancies after myeloablative haploidentical transplantation with G-CSF/ATG and posttransplant cyclophosphamide: results from the Chinese Bone Marrow Transplantation Registry Group (CBMTRG). SCIENCE CHINA-LIFE SCIENCES 2019; 63:571-581. [PMID: 31420852 DOI: 10.1007/s11427-019-9594-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/21/2019] [Indexed: 01/25/2023]
Abstract
This study compared G-CSF/ATG and PTCy in myeloablative haploidentical hematopoietic stem cell transplantation (haplo-HSCT) for hematologic malignancies between January 2013 and March 2018 reporting to the Chinese Bone Marrow Transplantation Registry Group (CBMTRG). For each PTCy, G-CSF/ATG subjects (1:4) were selected using the nested case-pair method. In total, 220 patients including 176 in G-CSF/ATG group and 44 in PTCy group were analyzed. The incidences of 30-day neutrophil engraftment (88.6% vs. 96.6%, P=0.001), 90-day platelet engraftment (84.1% vs. 94.2%, P=0.04), the median time to neutrophil engraftment (17 days vs. 12 days, P=0.000) and platelet engraftment (22 days vs. 17 days, P=0.001) were significantly inferior in PTCy group. The incidences of grades 2-4 and 3-4 acute graft-versus-host disease (GVHD), chronic GVHD and severe chronic GVHD were comparable. Among G-CSF/ATG and PTCy groups, the 3-year progression-free survival, overall survival, cumulative incidences of nonrelapse mortality and relapse was 74.3% vs. 61% (P=0.045), 78.3% vs. 65.2% (P=0.039), 12% vs. 27.3% (P=0.008), and 14.9% vs. 11.7% (P=0.61), respectively. G-CSF/ATG can achieve better engraftment, PFS and OS, and lower incidence of NRM compared to PTCy in myeloablative haplo-HSCT for hematologic malignancies.
Collapse
Affiliation(s)
- Feifei Tang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yajing Xu
- Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Huiren Chen
- PLA Army General Hospital, Beijing, 100700, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Qifa Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
12
|
Wang Y, Xu L, Yan C, Huang X. Modification of donor lymphocyte infusion: how to improve the outcome? SCIENCE CHINA-LIFE SCIENCES 2019; 62:1253-1256. [PMID: 31372818 DOI: 10.1007/s11427-019-9597-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/20/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
13
|
Hu LJ, Cao XH, Yu XX, Liu XF, Zhao XS, Chang YJ, Zhang XH, Xu LP, Wang Y, Liu KY, Huang XJ, Zhao XY. NK cell reconstitution following unmanipulated HLA-mismatched/haploidentical transplantation compared with matched sibling transplantation. SCIENCE CHINA-LIFE SCIENCES 2019; 63:781-784. [DOI: 10.1007/s11427-018-9565-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
|
14
|
Chimeric antigen receptor engineered innate immune cells in cancer immunotherapy. SCIENCE CHINA-LIFE SCIENCES 2019; 62:633-639. [DOI: 10.1007/s11427-018-9451-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
|