1
|
Ma Y, Lv H, Xing F, Xiang W, Wu Z, Feng Q, Wang H, Yang W. Cancer stem cell-immune cell crosstalk in the tumor microenvironment for liver cancer progression. Front Med 2024; 18:430-445. [PMID: 38600350 DOI: 10.1007/s11684-023-1049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/15/2023] [Indexed: 04/12/2024]
Abstract
Crosstalk between cancer cells and the immune microenvironment is determinant for liver cancer progression. A tumor subpopulation called liver cancer stem cells (CSCs) significantly accounts for the initiation, metastasis, therapeutic resistance, and recurrence of liver cancer. Emerging evidence demonstrates that the interaction between liver CSCs and immune cells plays a crucial role in shaping an immunosuppressive microenvironment and determining immunotherapy responses. This review sheds light on the bidirectional crosstalk between liver CSCs and immune cells for liver cancer progression, as well as the underlying molecular mechanisms after presenting an overview of liver CSCs characteristic and their microenvironment. Finally, we discuss the potential application of liver CSCs-targeted immunotherapy for liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ma
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongwei Lv
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Fuxue Xing
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Zixin Wu
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Qiyu Feng
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China
| | - Hongyang Wang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| | - Wen Yang
- Cancer Research Center, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, 201805, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200438, China.
- Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Shanghai, 200438, China.
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, 200438, China.
| |
Collapse
|
2
|
Sukowati CH, El-Khobar K, Jasirwan COM, Kurniawan J, Gani RA. Stemness markers in hepatocellular carcinoma of Eastern vs. Western population: Etiology matters? Ann Hepatol 2024; 29:101153. [PMID: 37734662 DOI: 10.1016/j.aohep.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. HCC development is associated with its underlying etiologies, mostly caused by infection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol, non-alcoholic fatty liver disease, and exposure to aflatoxins. These variables, together with human genetic susceptibility, contribute to HCC molecular heterogeneity, including at the cellular level. HCC initiation, tumor recurrence, and drug resistance rates have been attributed to the presence of liver cancer stem cells (CSC). This review summarizes available data regarding whether various HCC etiologies may be associated to the appearance of CSC biomarkers. It also described the genetic variations of tumoral tissues obtained from Western and Eastern populations, in particular to the oncogenic effect of HBV in the human genome.
Collapse
Affiliation(s)
- Caecilia Hc Sukowati
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park campus Basovizza, SS14 km 163.5, Trieste 34149, Italy; Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia.
| | - Korri El-Khobar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Chyntia Olivia Maurine Jasirwan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Juferdy Kurniawan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Rino Alvani Gani
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| |
Collapse
|
3
|
Cancer Stem Cells in Hepatocellular Carcinoma: Intrinsic and Extrinsic Molecular Mechanisms in Stemness Regulation. Int J Mol Sci 2022; 23:ijms232012327. [PMID: 36293184 PMCID: PMC9604119 DOI: 10.3390/ijms232012327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the most predominant type of liver cancer with an extremely poor prognosis due to its late diagnosis and high recurrence rate. One of the culprits for HCC recurrence and metastasis is the existence of cancer stem cells (CSCs), which are a small subset of cancer cells possessing robust stem cell properties within tumors. CSCs play crucial roles in tumor heterogeneity constitution, tumorigenesis, tumor relapse, metastasis, and resistance to anti-cancer therapies. Elucidation of how these CSCs maintain their stemness features is essential for the development of CSCs-based therapy. In this review, we summarize the present knowledge of intrinsic molecules and signaling pathways involved in hepatic CSCs, especially the CSC surface markers and associated signaling in regulating the stemness characteristics and the heterogeneous subpopulations within the CSC pool. In addition, we recapitulate the effects of crucial extrinsic cellular components in the tumor microenvironment, including stromal cells and immune cells, on the modulation of hepatic CSCs. Finally, we synopsize the currently valuable CSCs-targeted therapy strategies based on intervention in these intrinsic and extrinsic molecular mechanisms, in the hope of shedding light on better clinical management of HCC patients.
Collapse
|
4
|
Integration of OV6 expression and CD68 + tumor-associated macrophages with clinical features better predicts the prognosis of patients with hepatocellular carcinoma. Transl Oncol 2022; 25:101509. [PMID: 36030750 PMCID: PMC9428913 DOI: 10.1016/j.tranon.2022.101509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Reliable prognostic indicators for accurately predicting postoperative outcomes in Hepatocellular carcinoma (HCC) patients are lacking. Although cancer stem-like cells (CSCs) and tumor-associated macrophages (TAMs) in tumor microenvironment are implicated in the occurrence and development of HCC, whether the combination of CSC biomarkers and TAM populations could achieve better performance in predicting the prognosis of patients with HCC has been rarely reported. METHODS A total of 306 HCC patients were randomly divided into the training and validation cohorts at a 1:1 ratio, and the expression of OV6 and CD68 was assessed using immunohistochemistry in HCC samples. The prognostic value of these biomarkers for post-surgical survival and recurrence were evaluated by the curve of receiver operating characteristic and multivariate Cox regression analyses. RESULTS The density of OV6+ CSCs was positively correlated with the infiltration of CD68+ TAMs in HCC. Both high OV6 expression and CD68+ TAM infiltration was closely associated with poor overall survival (OS) and progression-free survival (PFS) of HCC patients. Moreover, overexpression of OV6 and infiltration of CD68+ TAMs were identified as independent prognostic factors for OS and PFS after liver resection. The integration of OV6 and CD68 with tumor size and microvascular invasion exhibited highest C-index value for survival predictivity in HCC patients than any other biomarkers or clinical indicators alone. CONCLUSION Incorporating intratumoral OV6 expression and CD68+ TAMs infiltration with established clinical indicators may serve as a promising prognostic signature for HCC, and could more accurately predict the clinical outcomes for HCC patients after liver resection.
Collapse
|
5
|
Xia P, Liu DH. Cancer stem cell markers for liver cancer and pancreatic cancer. Stem Cell Res 2022; 60:102701. [PMID: 35149457 DOI: 10.1016/j.scr.2022.102701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSC) theory has ushered in a new era of cancer research. Tumor recurrence, metastasis and chemotherapy resistance are all related to the existence of cancer stem cells. Further understanding of tumor heterogeneity will contribute to targeted treatment. Liver cancer and pancreatic cancer are common digestive gland tumors with high lethality. This article reviews the identification and isolation of CSC markers in hepatocellular carcinoma and pancreatic cancer. The markers related signal pathways are involved in the occurrence and development of tumors, and have a significant impact on the proliferation, metastasis and invasion of cancer cells, which can be used as potential molecular therapeutic targets. This study will be helpful to understand cancer stem cell like cells.
Collapse
Affiliation(s)
- Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Liaoning Medical University, China.
| | - Da-Hua Liu
- Biological Anthropology Institute, College of Basic Medical Science, Liaoning Medical University, China
| |
Collapse
|
6
|
Liu YZ, Lu HL, Qi XM, Xing GZ, Wang X, Yu P, Liu L, Yang FF, Ding XL, Zhang ZA, Deng ZP, Gong LK, Ren J. Aristolochic acid I promoted clonal expansion but did not induce hepatocellular carcinoma in adult rats. Acta Pharmacol Sin 2021; 42:2094-2105. [PMID: 33686245 PMCID: PMC8633323 DOI: 10.1038/s41401-021-00622-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022]
Abstract
Aristolochic acid I (AAI) is a well-known nephrotoxic carcinogen, which is currently reported to be also associated with hepatocellular carcinoma (HCC). Whether AAI is a direct hepatocarcinogen remains controversial. In this study we investigated the association between AAI exposure and HCC in adult rats using a sensitive rat liver bioassay with several cofactors. Formation of glutathione S-transferase placental form-positive (GST-P+) foci was used as the marker for preneoplastic lesions/clonal expansion. We first conducted a medium-term (8 weeks) study to investigate whether AAI had any tumor-initiating or -promoting activity. Then a long-term (52 weeks) study was conducted to determine whether AAI can directly induce HCC. We showed that oral administration of single dose of AAI (20, 50, or 100 mg/kg) in combination with partial hepatectomy (PH) to stimulate liver proliferation did not induce typical GST-P+ foci in liver. In the 8-week study, only high dose of AAI (10 mg · kg-1 · d-1, 5 days a week for 6 weeks) in combination with PH significantly increased the number and area of GST-P+ foci initiated by diethylnitrosamine (DEN) in liver. Similarly, only high dose of AAI (10 mg· kg-1· d-1, 5 days a week for 52 weeks) in combination with PH significantly increased the number and area of hepatic GST-P+ foci in the 52-week study. No any nodules or HCC were observed in liver of any AAI-treated groups. In contrast, long-term administration of AAI (0.1, 1, 10 mg· kg-1· d-1) time- and dose-dependently caused death due to the occurrence of cancers in the forestomach, intestine, and/or kidney. Besides, AAI-DNA adducts accumulated in the forestomach, kidney, and liver in a time- and dose-dependent manner. Taken together, AAI promotes clonal expansion only in the high-dose group but did not induce any nodules or HCC in liver of adult rats till their deaths caused by cancers developed in the forestomach, intestine, and/or kidney. Findings from our animal studies will pave the way for further large-scale epidemiological investigation of the associations between AA and HCC.
Collapse
Affiliation(s)
- Yong-Zhen Liu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Heng-Lei Lu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin-Ming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guo-Zhen Xing
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Pan Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu Liu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang-Fang Yang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Lan Ding
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ze-An Zhang
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong-Ping Deng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Li-Kun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, CAS, Zhongshan, 528400, China.
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
7
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
8
|
Comprehensive analysis of miRNA-gene regulatory network with clinical significance in human cancers. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1201-1212. [PMID: 32170623 DOI: 10.1007/s11427-019-9667-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs), particularly the exosomal miRNAs have been widely used as biomarkers and promising therapeutic targets in cancer. However, a comprehensive analysis of miRNA-gene regulatory network with clinical significance remains scarce. The emergence of high-throughput multi-omics data over large, well-characterized patient cohorts provides an unprecedented opportunity to address this problem. Herein, we performed a clinic-centered analysis to identify cancer-associated miRNAs, miRNA-target axis. We first calculated the correlation among miRNA, mRNA and 75 unique clinico-pathological characteristics (CPCs) in 26 cancer types, and established an online resource (4CR). Interestingly, we found that the high expression of several DNA methylation-related enzymes was associated with adverse outcomes of cancer patients, and these genes were regulated by a cluster of miRNAs. Furthermore, by integrating exosomal miRNA and mRNA databases, we identified exosomal miRNA biomarkers for non-invasive cancer surveillance and therapy monitoring. Finally, we explored the role of CPC-related miRNAs for therapeutic effect prediction of drugs based on their shared targets. Our analysis pipeline illustrated the significance of clinic-centered analysis in miRNA-gene pair identification and provided helpful clues for future cancer studies.
Collapse
|
9
|
Enrichment of AT-TA transversion at 5'-CAG-3' motif is not a unique mutational signature of aristolochic acid. SCIENCE CHINA-LIFE SCIENCES 2019; 62:974-977. [PMID: 31187304 DOI: 10.1007/s11427-019-9566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
|
10
|
Fang L, Li F, Gu C. GDF-15: A Multifunctional Modulator and Potential Therapeutic Target in Cancer. Curr Pharm Des 2019; 25:654-662. [PMID: 30947652 DOI: 10.2174/1381612825666190402101143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Various pathological processes are associated with the aberrant expression and function of cytokines, especially those belonging to the transforming growth factor-β (TGF-β) family. Nevertheless, the functions of members of the TGF-β family in cancer progression and therapy are still uncertain. Growth differentiation factor- 15, which exists in intracellular and extracellular forms, is classified as a divergent member of the TGF-β superfamily. It has been indicated that GDF-15 is also connected to the evolution of cancer both positively and negatively depending upon the cellular state and environment. Under normal physiological conditions, GDF-15 inhibits early tumour promotion. However, its abnormal expression in advanced cancers causes proliferation, invasion, metastasis, cancer stem cell formation, immune escape and a reduced response to therapy. As a clinical indicator, GDF-15 can be used as a tool for the diagnosis and therapy of an extensive scope of cancers. Although some basic functions of GDF-15 are noncontroversial, their mechanisms remain unclear and complicated at the molecular level. Therefore, GDF-15 needs to be further explored and reviewed.
Collapse
Affiliation(s)
- Lei Fang
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Fengzhou Li
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Chundong Gu
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
11
|
HMGB1 as a Potential Biomarker and Therapeutic Target for Malignant Mesothelioma. DISEASE MARKERS 2019; 2019:4183157. [PMID: 30891101 PMCID: PMC6390248 DOI: 10.1155/2019/4183157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
Malignant mesothelioma (MM) is a rare, aggressive, and highly lethal cancer that is substantially induced by exposure to asbestos fibers. High-mobility group box 1 (HMGB1) is an intriguing proinflammatory molecule involved in MM. In this review, we describe the possible crucial roles of HMGB1 in carcinogenic mechanisms based on in vivo and in vitro experimental evidence and outline the clinical findings of epidemiological investigations regarding the possible roles of HMGB1 as a biomarker for MM. We conclude that novel strategies targeting HMGB1 may suppress MM cells and interfere with asbestos-induced inflammation.
Collapse
|