1
|
Dai X, Li J, Chen Y, Ostrikov KK. When Onco-Immunotherapy Meets Cold Atmospheric Plasma: Implications on CAR-T Therapies. Front Oncol 2022; 12:837995. [PMID: 35280746 PMCID: PMC8905244 DOI: 10.3389/fonc.2022.837995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
T cells engineered with chimeric antigen receptors (CAR) have demonstrated its widespread efficacy as a targeted immunotherapeutic modality. Yet, concerns on its specificity, efficacy and generalization prevented it from being established into a first-line approach against cancers. By reviewing challenges limiting its clinical application, ongoing efforts trying to resolve them, and opportunities that emerging oncotherapeutic modalities may bring to temper these challenges, we conclude that careful CAR design should be done to avoid the off-tumor effect, enhance the efficacy of solid tumor treatment, improve product comparability, and resolve problems such as differential efficacies of co-stimulatory molecules, cytokine storm, tumor lysis syndrome, myelosuppression and severe hepatotoxicity. As a promising solution, we propose potential synergies between CAR-T therapies and cold atmospheric plasma, an emerging onco-therapeutic strategy relying on reactive species, towards improved therapeutic efficacies and enhanced safety that deserve extensive investigations.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,CAPsoul Biotechnology Company, Ltd, Beijing, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Yiming Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Li D, Li X, Zhou WL, Huang Y, Liang X, Jiang L, Yang X, Sun J, Li Z, Han WD, Wang W. Genetically engineered T cells for cancer immunotherapy. Signal Transduct Target Ther 2019; 4:35. [PMID: 31637014 PMCID: PMC6799837 DOI: 10.1038/s41392-019-0070-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Dan Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Wei-Lin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Lin Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Xiao Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Jie Sun
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058 Zhejiang, China
- Institute of Hematology, Zhejiang University & Laboratory of Stem cell and Immunotherapy Engineering, 310058 Zhejing, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 200032 Shanghai, China
- CARsgen Therapeutics, 200032 Shanghai, China
| | - Wei-Dong Han
- Molecular & Immunological Department, Biotherapeutic Department, Chinese PLA General Hospital, No. 28 Fuxing Road, 100853 Beijing, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and the Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| |
Collapse
|