1
|
Qu M, Zhang Y, Gao Z, Zhang Z, Liu Y, Wan S, Wang X, Yu H, Zhang H, Liu Y, Schneider R, Meyer A, Lin Q. The genetic basis of the leafy seadragon's unique camouflage morphology and avenues for its efficient conservation derived from habitat modeling. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2317-6. [PMID: 37204606 DOI: 10.1007/s11427-022-2317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 05/20/2023]
Abstract
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Collapse
Affiliation(s)
- Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingyi Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhixin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- Global Ocean and Climate Research Center, South China Sea Institute of Oceanology, Guangzhou, 510301, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiming Wan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Yuhong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China
| | - Ralf Schneider
- Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou, 511458, China.
- Sanya Institute of Oceanology, SCSIO, Sanya, 572000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Abstract
Wound healing, tissue repair and regenerative medicine are in great demand, and great achievements in these fields have been made. The traditional strategy of tissue repair and regeneration has focused on the level of tissues and organs directly; however, the basic process of repair at the cell level is often neglected. Because the cell is the basic unit of organism structure and function; cell damage is caused first by ischemia or ischemia-reperfusion after severe trauma and injury. Then, damage to tissues and organs occurs with massive cell damage, apoptosis and even cell death. Thus, how to achieve the aim of perfect repair and regeneration? The basic process of tissue or organ repair and regeneration should involve repair of cells first, then tissues and organs. In this manuscript, it is my consideration about how to repair the cell first, then regenerate the tissues and organs.
Collapse
Affiliation(s)
- Xiao-Bing Fu
- Wound Healing Unit, Medical Innovation Department and the Fourth Medical Center, PLA General Hospital and PLA Medical College, 28 Fu Xing Rd, Beijing, 100853, China.
| |
Collapse
|