1
|
Liu J, Shi Y, Mo D, Luo L, Xu S, Lv F. The goat pan-genome reveals patterns of gene loss during domestication. J Anim Sci Biotechnol 2024; 15:132. [PMID: 39367490 PMCID: PMC11453020 DOI: 10.1186/s40104-024-01092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Unveiling genetic diversity features and understanding the genetic mechanisms of diverse goat phenotypes are pivotal in facilitating the preservation and utilization of these genetic resources. However, the total genetic diversity within a species can't be captured by the reference genome of a single individual. The pan-genome is a collection of all the DNA sequences that occur in a species, and it is expected to capture the total genomic diversity of the specific species. RESULTS We constructed a goat pan-genome using map-to-pan assemble based on 813 individuals, including 723 domestic goats and 90 samples from their wild relatives, which presented a broad regional and global representation. In total, 146 Mb sequences and 974 genes were identified as absent from the reference genome (ARS1.2; GCF_001704415.2). We identified 3,190 novel single nucleotide polymorphisms (SNPs) using the pan-genome analysis. These novel SNPs could properly reveal the population structure of domestic goats and their wild relatives. Presence/absence variation (PAV) analysis revealed gene loss and intense negative selection during domestication and improvement. CONCLUSIONS Our research highlights the importance of the goat pan-genome in capturing the missing genetic variations. It reveals the changes in genomic architecture during goat domestication and improvement, such as gene loss. This improves our understanding of the evolutionary and breeding history of goats.
Collapse
Affiliation(s)
- Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yilong Shi
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dongxin Mo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lingyun Luo
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Fenghua Lv
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Sa P, Gòdia M, Lewis N, Lian Y, Clop A. Genomic, transcriptomic and epigenomic analysis towards the understanding of porcine semen quality traits. Past, current and future trends. Anim Reprod Sci 2024; 269:107543. [PMID: 38981797 DOI: 10.1016/j.anireprosci.2024.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
The importance of boar reproductive traits, including semen quality, in the sustainability of pig production system is increasingly being acknowledged by academic and industrial sectors. Research is needed to understand the biology and genetic components underlying these traits so that they can be incorporated into selection schemes and managerial decisions. This article reviews our current understanding of genome biology and technologies for genome, transcriptome and epigenome analysis which now facilitate the identification of causal variants affecting phenotypes more than ever before. Genetic and transcriptomic analysis of candidate genes, Genome-Wide Association Studies, expression microarrays, RNA-Seq of coding and noncoding genes and epigenomic evaluations have been conducted to profile the molecular makeups of pig sperm. These studies have provided insightful information for a several semen-related parameters. Nonetheless, this research is still incipient. The spermatozoon harbors a reduced transcriptome and highly modified epigenome, and it is assumed to be transcriptionally silent for nuclear gene expression. For this reason, the extent to which the sperm's RNA and epigenome recapitulate sperm biology and function is unclear. Hence, we anticipate that single-cell level analyses of the testicle and other male reproductive organs, which can reveal active transcription and epigenomic profiles in cells influencing sperm quality, will gain popularity and markedly advance our understanding of sperm-related traits. Future research will delve deeper into sperm fertility, boar resilience to environmental changes or harsh conditions, especially in the context of global warming, and also in transgenerational inheritance and how the environment influences the sperm transcriptome and epigenome.
Collapse
Affiliation(s)
- Pedro Sa
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Nicole Lewis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Yu Lian
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
| | - Alex Clop
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain; Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Wang Y, Gou Y, Yuan R, Zou Q, Zhang X, Zheng T, Fei K, Shi R, Zhang M, Li Y, Gong Z, Luo C, Xiong Y, Shan D, Wei C, Shen L, Tang G, Li M, Zhu L, Li X, Jiang Y. A chromosome-level genome of Chenghua pig provides new insights into the domestication and local adaptation of pigs. Int J Biol Macromol 2024; 270:131796. [PMID: 38677688 DOI: 10.1016/j.ijbiomac.2024.131796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
As a country with abundant genetic resources of pigs, the domestication history of pigs in China and the adaptive evolution of Chinese pig breeds at different latitudes have rarely been elucidated at the genome-wide level. To fill this gap, we first assembled a high-quality chromosome-level genome of the Chenghua pig and used it as a benchmark to analyse the genomes of 272 samples from three genera of three continents. The divergence of the three species belonging to three genera, Phacochoerus africanus, Potamochoerus porcus, and Sus scrofa, was assessed. The introgression of pig breeds redefined that the migration routes were basically from southern China to central and southwestern China, then spread to eastern China, arrived in northern China, and finally reached Europe. The domestication of pigs in China occurred ∼12,000 years ago, earlier than the available Chinese archaeological domestication evidence. In addition, FBN1 and NR6A1 were identified in our study as candidate genes related to extreme skin thickness differences in Eurasian pig breeds and adaptive evolution at different latitudes in Chinese pig breeds, respectively. Our study provides a new resource for the pig genomic pool and refines our understanding of pig genetic diversity, domestication, migration, and adaptive evolution at different latitudes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yuwei Gou
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xukun Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chenggang Luo
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Ying Xiong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chenyang Wei
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
4
|
Gao G, Liu R, Hu S, He M, Zhang J, Gao D, Li J, Hu J, Wang J, Wang Q, Li M, Jin L. Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet. J Anim Sci Biotechnol 2024; 15:60. [PMID: 38693536 PMCID: PMC11064361 DOI: 10.1186/s40104-024-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. RESULTS In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. CONCLUSIONS We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.
Collapse
Affiliation(s)
- Guangliang Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Rui Liu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dengfeng Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwei Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwen Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qigui Wang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Du H, Diao C, Zhuo Y, Zheng X, Hu Z, Lu S, Jin W, Zhou L, Liu JF. Assembly of novel sequences for Chinese domestic pigs reveals new genes and regulatory variants providing new insights into their diversity. Genomics 2024; 116:110782. [PMID: 38176574 DOI: 10.1016/j.ygeno.2024.110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
There is an increasing understanding that a reference genome representing an individual cannot capture all the gene repertoire of a species. Here, we conduct a population-scale missing sequences detection of Chinese domestic pigs using whole-genome sequencing data from 534 individuals. We identify 132.41 Mb of sequences absent in the reference assembly, including eight novel genes. In particular, the breeds spread in Chinese high-altitude regions perform significantly different frequencies of new sequences in promoters than other breeds. Furthermore, we dissect the role of non-coding variants and identify a novel sequence inserted in the 3'UTR of the FMO3 gene, which may be associated with the intramuscular fat phenotype. This novel sequence could be a candidate marker for meat quality. Our study provides a comprehensive overview of the missing sequences in Chinese domestic pigs and indicates that this dataset is a valuable resource for understanding the diversity and biology of pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Chenguang Diao
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xianrui Zheng
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhengzheng Hu
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjiao Jin
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Miao J, Wei X, Cao C, Sun J, Xu Y, Zhang Z, Wang Q, Pan Y, Wang Z. Pig pangenome graph reveals functional features of non-reference sequences. J Anim Sci Biotechnol 2024; 15:32. [PMID: 38389084 PMCID: PMC10882747 DOI: 10.1186/s40104-023-00984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The reliance on a solitary linear reference genome has imposed a significant constraint on our comprehensive understanding of genetic variation in animals. This constraint is particularly pronounced for non-reference sequences (NRSs), which have not been extensively studied. RESULTS In this study, we constructed a pig pangenome graph using 21 pig assemblies and identified 23,831 NRSs with a total length of 105 Mb. Our findings revealed that NRSs were more prevalent in breeds exhibiting greater genetic divergence from the reference genome. Furthermore, we observed that NRSs were rarely found within coding sequences, while NRS insertions were enriched in immune-related Gene Ontology terms. Notably, our investigation also unveiled a close association between novel genes and the immune capacity of pigs. We observed substantial differences in terms of frequencies of NRSs between Eastern and Western pigs, and the heat-resistant pigs exhibited a substantial number of NRS insertions in an 11.6 Mb interval on chromosome X. Additionally, we discovered a 665 bp insertion in the fourth intron of the TNFRSF19 gene that may be associated with the ability of heat tolerance in Southern Chinese pigs. CONCLUSIONS Our findings demonstrate the potential of a graph genome approach to reveal important functional features of NRSs in pig populations.
Collapse
Affiliation(s)
- Jian Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xingyu Wei
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Caiyun Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuejin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Yazhou Bay Science and Technology City, Hainan Institute of Zhejiang University, Yazhou District, Building 11, Yongyou Industrial Park, Sanya, 572025, Hainan, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Yazhou Bay Science and Technology City, Hainan Institute of Zhejiang University, Yazhou District, Building 11, Yongyou Industrial Park, Sanya, 572025, Hainan, China.
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
7
|
Liu X, Zheng J, Ding J, Wu J, Zuo F, Zhang G. When Livestock Genomes Meet Third-Generation Sequencing Technology: From Opportunities to Applications. Genes (Basel) 2024; 15:245. [PMID: 38397234 PMCID: PMC10888458 DOI: 10.3390/genes15020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Third-generation sequencing technology has found widespread application in the genomic, transcriptomic, and epigenetic research of both human and livestock genetics. This technology offers significant advantages in the sequencing of complex genomic regions, the identification of intricate structural variations, and the production of high-quality genomes. Its attributes, including long sequencing reads, obviation of PCR amplification, and direct determination of DNA/RNA, contribute to its efficacy. This review presents a comprehensive overview of third-generation sequencing technologies, exemplified by single-molecule real-time sequencing (SMRT) and Oxford Nanopore Technology (ONT). Emphasizing the research advancements in livestock genomics, the review delves into genome assembly, structural variation detection, transcriptome sequencing, and epigenetic investigations enabled by third-generation sequencing. A comprehensive analysis is conducted on the application and potential challenges of third-generation sequencing technology for genome detection in livestock. Beyond providing valuable insights into genome structure analysis and the identification of rare genes in livestock, the review ventures into an exploration of the genetic mechanisms underpinning exemplary traits. This review not only contributes to our understanding of the genomic landscape in livestock but also provides fresh perspectives for the advancement of research in this domain.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Junyuan Zheng
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jialan Ding
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| |
Collapse
|
8
|
Zhang K, Liang J, Fu Y, Chu J, Fu L, Wang Y, Li W, Zhou Y, Li J, Yin X, Wang H, Liu X, Mou C, Wang C, Wang H, Dong X, Yan D, Yu M, Zhao S, Li X, Ma Y. AGIDB: a versatile database for genotype imputation and variant decoding across species. Nucleic Acids Res 2024; 52:D835-D849. [PMID: 37889051 PMCID: PMC10767904 DOI: 10.1093/nar/gkad913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The high cost of large-scale, high-coverage whole-genome sequencing has limited its application in genomics and genetics research. The common approach has been to impute whole-genome sequence variants obtained from a few individuals for a larger population of interest individually genotyped using SNP chip. An alternative involves low-coverage whole-genome sequencing (lcWGS) of all individuals in the larger population, followed by imputation to sequence resolution. To overcome limitations of processing lcWGS data and meeting specific genotype imputation requirements, we developed AGIDB (https://agidb.pro), a website comprising tools and database with an unprecedented sample size and comprehensive variant decoding for animals. AGIDB integrates whole-genome sequencing and chip data from 17 360 and 174 945 individuals, respectively, across 89 species to identify over one billion variants, totaling a massive 688.57 TB of processed data. AGIDB focuses on integrating multiple genotype imputation scenarios. It also provides user-friendly searching and data analysis modules that enable comprehensive annotation of genetic variants for specific populations. To meet a wide range of research requirements, AGIDB offers downloadable reference panels for each species in addition to its extensive dataset, variant decoding and utility tools. We hope that AGIDB will become a key foundational resource in genetics and breeding, providing robust support to researchers.
Collapse
Affiliation(s)
- Kaili Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiete Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangjiao Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - You Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhua Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxiao Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Heng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Guangzhou 510642, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Guangzhou 510642, China
| |
Collapse
|
9
|
Li X, Xin A, Ma L, Gou X, Fang S, Dong X, Ni B, Tang L, Zhu L, Yan D, Kong X. Molecular genetic characterization and meat-use functional gene identification in Jianshui yellow-brown ducks through combined resequencing and transcriptome analysis. Front Vet Sci 2023; 10:1269904. [PMID: 38179331 PMCID: PMC10765987 DOI: 10.3389/fvets.2023.1269904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
The Jianshui yellow-brown duck is a unique country-specific waterfowl species in Yunnan Province, well known for its tender meat. However, there is a lack of comprehensive systematic research on the molecular genetic characteristics, especially germplasm resources and economic traits, of the Jianshui yellow-brown ducks. This study investigated the molecular genetic characteristics of Jianshui yellow-brown ducks, compared their selection signals with those of ancestral mallard and meat-type Pekin ducks, and identified genes specific to their meat-use performance. Furthermore, this study also evaluated the breeding potential for its meat performance. In this study, phylogenetic trees, PCA and Admixture analysis were used to investigate the population genetic structure among local duck breeds in China; population genetic differentiation index (Fst), nucleotide diversity and Tajima's D were used to detect selected loci and genes in the population of Jianshui yellow-brown ducks; and transcriptome technology was used to screen for differentially expressed genes in the liver, sebum and breast muscle tissues, and finally, the results of the genome selection signals and transcriptome data were integrated to excavate functional genes affecting the meat performance of the Jianshui yellow-brown ducks. The results of the genetic structure of the population showed that Jianshui yellow-brown ducks were clustered into a separate group. Selection signal analysis indicated significant selection pressure on certain genes related to meat characteristics (ELOVL2, ELOVL3, GDF10, VSTM2A, PHOSPHO1, and IGF2BP1) in both Jianshui yellow-brown ducks and mallards. Transcriptomic data analysis suggested that ELOVL3, PHOSPHO1, and GDF10 are vital candidate genes influencing meat production and quality in Jianshui yellow-brown ducks. A comparison of selection signals between Jianshui yellow-brown ducks and Pekin ducks revealed only 21 selected genes in the Jianshui yellow-brown duck population, and no significant genes were related to meat traits. Moreover, whole-genome resequencing data suggested that the Jianshui yellow-brown duck represents a unique category with distinct genetic mechanisms. Through selection signaling and transcriptomic approaches, we successfully screened and identified important candidate genes affecting meat traits in Jianshui yellow-brown ducks. Furthermore, the Jianshui yellow-brown duck has good potential for improved meat performance, highlighting the need for further improvement.
Collapse
Affiliation(s)
- Xinpeng Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Aiguo Xin
- Poultry Husbandry and Disease Research Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, China
| | - Li Ma
- Animal Husbandry and Veterinary College, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Xiao Gou
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Suyun Fang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bin Ni
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Lin Tang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, Smith J, Yang YZ, Burt DW, Hincke M, Zhang ZD, Yuan MD, Kaufman J, Sun CJ, Li JY, Shao LW, Yang N, Hou ZC. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Commun Biol 2023; 6:1233. [PMID: 38057566 PMCID: PMC10700341 DOI: 10.1038/s42003-023-05619-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yun-Xiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Yu-Chen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yu-Ze Yang
- Beijing General Station of Animal Husbandry, 100101, Beijing, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Zi-Ding Zhang
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Meng-Di Yuan
- College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Cong-Jiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Jun-Ying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China
| | - Li-Wa Shao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, 100193, Beijing, China.
- Sanya Institute of China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Gao G, Zhang H, Ni J, Zhao X, Zhang K, Wang J, Kong X, Wang Q. Insights into genetic diversity and phenotypic variations in domestic geese through comprehensive population and pan-genome analysis. J Anim Sci Biotechnol 2023; 14:150. [PMID: 38001525 PMCID: PMC10675864 DOI: 10.1186/s40104-023-00944-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Domestic goose breeds are descended from either the Swan goose (Anser cygnoides) or the Greylag goose (Anser anser), exhibiting variations in body size, reproductive performance, egg production, feather color, and other phenotypic traits. Constructing a pan-genome facilitates a thorough identification of genetic variations, thereby deepening our comprehension of the molecular mechanisms underlying genetic diversity and phenotypic variability. RESULTS To comprehensively facilitate population genomic and pan-genomic analyses in geese, we embarked on the task of 659 geese whole genome resequencing data and compiling a database of 155 RNA-seq samples. By constructing the pan-genome for geese, we generated non-reference contigs totaling 612 Mb, unveiling a collection of 2,813 novel genes and pinpointing 15,567 core genes, 1,324 softcore genes, 2,734 shell genes, and 878 cloud genes in goose genomes. Furthermore, we detected an 81.97 Mb genomic region showing signs of genome selection, encompassing the TGFBR2 gene correlated with variations in body weight among geese. Genome-wide association studies utilizing single nucleotide polymorphisms (SNPs) and presence-absence variation revealed significant genomic associations with various goose meat quality, reproductive, and body composition traits. For instance, a gene encoding the SVEP1 protein was linked to carcass oblique length, and a distinct gene-CDS haplotype of the SVEP1 gene exhibited an association with carcass oblique length. Notably, the pan-genome analysis revealed enrichment of variable genes in the "hair follicle maturation" Gene Ontology term, potentially linked to the selection of feather-related traits in geese. A gene presence-absence variation analysis suggested a reduced frequency of genes associated with "regulation of heart contraction" in domesticated geese compared to their wild counterparts. Our study provided novel insights into gene expression features and functions by integrating gene expression patterns across multiple organs and tissues in geese and analyzing population variation. CONCLUSION This accomplishment originates from the discernment of a multitude of selection signals and candidate genes associated with a wide array of traits, thereby markedly enhancing our understanding of the processes underlying domestication and breeding in geese. Moreover, assembling the pan-genome for geese has yielded a comprehensive apprehension of the goose genome, establishing it as an indispensable asset poised to offer innovative viewpoints and make substantial contributions to future geese breeding initiatives.
Collapse
Affiliation(s)
- Guangliang Gao
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China
| | - Hongmei Zhang
- Department of Cardiovascular Ultrasound and Non-Invasive Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital,University of Electronic Science and Technology of China, Chengdu, 611731, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiangping Ni
- JiguangGene Biotechnology Co., Ltd., Nanjing, 210032, China
| | - Xianzhi Zhao
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China
| | - Keshan Zhang
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China
| | - Jian Wang
- Jiangsu Agri-Animal Vocational College, Taizhou, 225300, China
| | - Xiangdong Kong
- JiguangGene Biotechnology Co., Ltd., Nanjing, 210032, China.
| | - Qigui Wang
- Chongqing Academy of Animal Science, Rongchang District, Chongqing, 402460, China.
- Chongqing Engineering Research Center of Goose Genetic Improvement, Rongchang District, Chongqing, 402460, China.
- Present Address: Poultry Science Institute, Chongqing Academy of Animal Science, No. 51 Changzhou Avenue, Rongchang District, Chongqing, 402460, P. R. China.
| |
Collapse
|
12
|
Saco A, Rey-Campos M, Gallardo-Escárate C, Gerdol M, Novoa B, Figueras A. Gene presence/absence variation in Mytilus galloprovincialis and its implications in gene expression and adaptation. iScience 2023; 26:107827. [PMID: 37744033 PMCID: PMC10514466 DOI: 10.1016/j.isci.2023.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
Presence/absence variation (PAV) is a well-known phenomenon in prokaryotes that was described for the first time in bivalves in 2020 in Mytilus galloprovincialis. The objective of the present study was to further our understanding of the PAV phenomenon in mussel biology. The distribution of PAV was studied in a mussel chromosome-level genome assembly, revealing a widespread distribution but with hotspots of dispensability. Special attention was given to the effect of PAV in gene expression, since dispensable genes were found to be inherently subject to distortions due to their sparse distribution among individuals. Furthermore, the high expression and strong tissue specificity of some dispensable genes, such as myticins, strongly supported their biological relevance. The significant differences in the repertoire of dispensable genes associated with two geographically distinct populations suggest that PAV is involved in local adaptation. Overall, the PAV phenomenon would provide a key selective advantage at the population level.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | | | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Beatriz Novoa
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| |
Collapse
|
13
|
Li Z, Liu X, Wang C, Li Z, Jiang B, Zhang R, Tong L, Qu Y, He S, Chen H, Mao Y, Li Q, Pook T, Wu Y, Zan Y, Zhang H, Li L, Wen K, Chen Y. The pig pangenome provides insights into the roles of coding structural variations in genetic diversity and adaptation. Genome Res 2023; 33:1833-1847. [PMID: 37914227 PMCID: PMC10691484 DOI: 10.1101/gr.277638.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/12/2023] [Indexed: 11/03/2023]
Abstract
Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.
Collapse
Affiliation(s)
- Zhengcao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Chen Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenyang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Bo Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ruifeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Youping Qu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Haifan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yafei Mao
- Bio-X Institutes, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Qingnan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Torsten Pook
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6700 AH, The Netherlands
| | - Yu Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yanjun Zan
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Keying Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| |
Collapse
|
14
|
Gong Y, Li Y, Liu X, Ma Y, Jiang L. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals? J Anim Sci Biotechnol 2023; 14:73. [PMID: 37143156 PMCID: PMC10161434 DOI: 10.1186/s40104-023-00860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 05/06/2023] Open
Abstract
As large-scale genomic studies have progressed, it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level. While domestic animals tend to have complex routes of origin and migration, suggesting a possible omission of some population-specific sequences in the current reference genome. Conversely, the pangenome is a collection of all DNA sequences of a species that contains sequences shared by all individuals (core genome) and is also able to display sequence information unique to each individual (variable genome). The progress of pangenome research in humans, plants and domestic animals has proved that the missing genetic components and the identification of large structural variants (SVs) can be explored through pangenomic studies. Many individual specific sequences have been shown to be related to biological adaptability, phenotype and important economic traits. The maturity of technologies and methods such as third-generation sequencing, Telomere-to-telomere genomes, graphic genomes, and reference-free assembly will further promote the development of pangenome. In the future, pangenome combined with long-read data and multi-omics will help to resolve large SVs and their relationship with the main economic traits of interest in domesticated animals, providing better insights into animal domestication, evolution and breeding. In this review, we mainly discuss how pangenome analysis reveals genetic variations in domestic animals (sheep, cattle, pigs, chickens) and their impacts on phenotypes and how this can contribute to the understanding of species diversity. Additionally, we also go through potential issues and the future perspectives of pangenome research in livestock and poultry.
Collapse
Affiliation(s)
- Ying Gong
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yefang Li
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xuexue Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, 31000, France
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
15
|
Jiang YF, Wang S, Wang CL, Xu RH, Wang WW, Jiang Y, Wang MS, Jiang L, Dai LH, Wang JR, Chu XH, Zeng YQ, Fang LZ, Wu DD, Zhang Q, Ding XD. Pangenome obtained by long-read sequencing of 11 genomes reveal hidden functional structural variants in pigs. iScience 2023; 26:106119. [PMID: 36852268 PMCID: PMC9958381 DOI: 10.1016/j.isci.2023.106119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Long-read sequencing (LRS) facilitates both the genome assembly and the discovery of structural variants (SVs). Here, we built a graph-based pig pangenome by incorporating 11 LRS genomes with an average of 94.01% BUSCO completeness score, revealing 206-Mb novel sequences. We discovered 183,352 nonredundant SVs (63% novel), representing 12.12% of the reference genome. By genotyping SVs in an additional 196 short-read sequencing samples, we identified thousands of population stratified SVs. Particularly, we detected 7,568 Tibetan specific SVs, some of which demonstrate significant population differentiation between Tibetan and low-altitude pigs, which might be associated with the high-altitude hypoxia adaptation in Tibetan pigs. Further integrating functional genomic data, the most promising candidate genes within the SVs that might contribute to the high-altitude hypoxia adaptation were discovered. Overall, our study generates a benchmark pangenome resource for illustrating the important roles of SVs in adaptive evolution, domestication, and genetic improvement of agronomic traits in pigs.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chong-Long Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ru-Hai Xu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen-Wen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271001, China
| | - Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Li-He Dai
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie-Ru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiao-Hong Chu
- Key Laboratory of Animal Genetics and Breeding of Zhejiang Province, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong-Qing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271001, China
| | - Ling-Zhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian 271001, China
| | - Xiang-Dong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
The Innovative Informatics Approaches of High-Throughput Technologies in Livestock: Spearheading the Sustainability and Resiliency of Agrigenomics Research. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111893. [PMID: 36431028 PMCID: PMC9695872 DOI: 10.3390/life12111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.
Collapse
|
17
|
Liu R, Li X, Zhang X, Ren R, Sun Y, Tian X, Zhang Q, Zhao S, Yu M, Cao J. Long-range interaction within the chromatin domain determines regulatory patterns in porcine skeletal muscle. Genomics 2022; 114:110482. [PMID: 36113676 DOI: 10.1016/j.ygeno.2022.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 01/14/2023]
Abstract
Spatial chromatin structure is crucial for understanding the early growth and development of porcine skeletal muscle. However, its characteristic of 3D architecture and elaborate regulation of gene transcription remains unclear. In this study, ChIA-PET method is used to study the changes of early chromatin three-dimensional structure in skeletal muscle of lean type Yorkshire pig and fat type Meishan pig. Integrating the in situ Hi-C data revealed the 3D architecture and long-range interaction of the porcine muscle. The results showed the CTCF/RNAPII mediated long-range interaction shapes the different chromatin architecture and dominates the unique regulation of enhancers. In addition, the results revealed that key myogenic genes like ssc-mir-1 had a unique enhancer regulation function in myogenesis. Interestingly, the FGF6 gene is of breed-specific regulation, implying the difference between two breeds in skeletal muscle development. Our research thus may provide a clue for the porcine genetic improvement of skeletal muscle.
Collapse
Affiliation(s)
- Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruimin Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohuan Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China; 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Zhou Y, Yang L, Han X, Han J, Hu Y, Li F, Xia H, Peng L, Boschiero C, Rosen BD, Bickhart DM, Zhang S, Guo A, Van Tassell CP, Smith TPL, Yang L, Liu GE. Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, providing new insights into their diversity and evolutionary history. Genome Res 2022; 32:1585-1601. [PMID: 35977842 PMCID: PMC9435747 DOI: 10.1101/gr.276550.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/21/2022] [Indexed: 02/03/2023]
Abstract
A cattle pangenome representation was created based on the genome sequences of 898 cattle representing 57 breeds. The pangenome identified 83 Mb of sequence not found in the cattle reference genome, representing 3.1% novel sequence compared with the 2.71-Gb reference. A catalog of structural variants developed from this cattle population identified 3.3 million deletions, 0.12 million inversions, and 0.18 million duplications. Estimates of breed ancestry and hybridization between cattle breeds using insertion/deletions as markers were similar to those produced by single nucleotide polymorphism-based analysis. Hundreds of deletions were observed to have stratification based on subspecies and breed. For example, an insertion of a Bov-tA1 repeat element was identified in the first intron of the APPL2 gene and correlated with cattle breed geographic distribution. This insertion falls within a segment overlapping predicted enhancer and promoter regions of the gene, and could affect important traits such as immune response, olfactory functions, cell proliferation, and glucose metabolism in muscle. The results indicate that pangenomes are a valuable resource for studying diversity and evolutionary history, and help to delineate how domestication, trait-based breeding, and adaptive introgression have shaped the cattle genome.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaotao Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiazheng Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingwei Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Derek M Bickhart
- Dairy Forage Research Center, ARS USDA, Madison, Wisconsin 53706, USA
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, ARS USDA, Clay Center, Nebraska 68933, USA
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, Maryland 20705, USA
| |
Collapse
|
19
|
Ahn J, Lee J, Kim DH, Hwang IS, Park MR, Cho IC, Hwang S, Lee K. Loss of Monoallelic Expression of IGF2 in the Adult Liver Via Alternative Promoter Usage and Chromatin Reorganization. Front Genet 2022; 13:920641. [PMID: 35938007 PMCID: PMC9355166 DOI: 10.3389/fgene.2022.920641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, genomic imprinting operates via gene silencing mechanisms. Although conservation of the imprinting mechanism at the H19/IGF2 locus has been generally described in pigs, tissue-specific imprinting at the transcript level, monoallelic-to-biallelic conversion, and spatio-temporal chromatin reorganization remain largely uninvestigated. Here, we delineate spatially regulated imprinting of IGF2 transcripts, age-dependent hepatic mono- to biallelic conversion, and reorganization of topologically associating domains at the porcine H19/IGF2 locus for better translation to human and animal research. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of normal and parthenogenetic porcine embryos revealed the paternally hypermethylated H19 differentially methylated region and paternal expression of IGF2. Using a polymorphism-based approach and omics datasets from chromatin immunoprecipitation sequencing (ChIP–seq), whole-genome sequencing (WGS), RNA-seq, and Hi-C, regulation of IGF2 during development was analyzed. Regulatory elements in the liver were distinguished from those in the muscle where the porcine IGF2 transcript was monoallelically expressed. The IGF2 transcript from the liver was biallelically expressed at later developmental stages in both pigs and humans. Chromatin interaction was less frequent in the adult liver compared to the fetal liver and skeletal muscle. The duration of genomic imprinting effects within the H19/IGF2 locus might be reduced in the liver with biallelic conversion through alternative promoter usage and chromatin remodeling. Our integrative omics analyses of genome, epigenome, and transcriptome provided a comprehensive view of imprinting status at the H19/IGF2 cluster.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Joonbum Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH, United States
| | - Dong-Hwan Kim
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonbuk, South Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonbuk, South Korea
| | - In-Cheol Cho
- National Institute of Animal Science, Rural Development Administration, Jeju, South Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonbuk, South Korea
| | - Kichoon Lee
- Functional Genomics Laboratory, Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
- The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus, OH, United States
- *Correspondence: Kichoon Lee,
| |
Collapse
|
20
|
Wu Y, Zhang Y, Liu H, Gao Y, Liu Y, Chen L, Liu L, Irwin DM, Hou C, Zhou Z, Zhang Y. Genome-wide identification of functional enhancers and their potential roles in pig breeding. J Anim Sci Biotechnol 2022; 13:75. [PMID: 35781353 PMCID: PMC9252078 DOI: 10.1186/s40104-022-00726-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/04/2022] [Indexed: 01/04/2023] Open
Abstract
Background The pig is an economically important livestock species and is a widely applied large animal model in medical research. Enhancers are critical regulatory elements that have fundamental functions in evolution, development and disease. Genome-wide quantification of functional enhancers in the pig is needed. Results We performed self-transcribing active regulatory region sequencing (STARR-seq) in the porcine kidney epithelial PK15 and testicular ST cell lines, and reliably identified 2576 functional enhancers. Most of these enhancers were located in repetitive sequences and were enriched within silent and lowly expressed genes. Enhancers poorly overlapped with chromatin accessibility regions and were highly enriched in chromatin with the repressive histone modification H3K9me3, which is different from predicted pig enhancers detected using ChIP-seq for H3K27ac or/and H3K4me1 modified histones. This suggests that most pig enhancers identified with STARR-seq are endogenously repressed at the chromatin level and may function during cell type-specific development or at specific developmental stages. Additionally, the PPP3CA gene is associated with the loin muscle area trait and the QKI gene is associated with alkaline phosphatase activity that may be regulated by distal functional enhancers. Conclusions In summary, we generated the first functional enhancer map in PK15 and ST cells for the pig genome and highlight its potential roles in pig breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00726-y.
Collapse
Affiliation(s)
- Yinqiao Wu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yuedong Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.,State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China.,School of Life Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Hang Liu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yuyan Liu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China.,School of Life Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Ling Chen
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China.,School of Life Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Lu Liu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chunhui Hou
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhongyin Zhou
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
21
|
Li D, He M, Tang Q, Tian S, Zhang J, Li Y, Wang D, Jin L, Ning C, Zhu W, Hu S, Long K, Ma J, Liu J, Zhang Z, Li M. Comparative 3D genome architecture in vertebrates. BMC Biol 2022; 20:99. [PMID: 35524220 PMCID: PMC9077971 DOI: 10.1186/s12915-022-01301-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/20/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene transcription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene expression that determine evolutionary differences among species, the way 3D genome architecture is affected by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species. RESULTS This analysis shows a correlation between genome size and chromosome length that affects chromosome territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, including local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conservation of topologically associating domains (TADs) appears strongly associated with the modularity of expression profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and euchromatin organization, respectively, during the evolution of genome architecture. CONCLUSIONS Our analysis uncovers organizational features that appear to determine the conservation and transcriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome evolution by extending our understanding of the mechanisms shaping genome architecture.
Collapse
Affiliation(s)
- Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Novogene Bioinformatics Institute, Beijing, 100000, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Danyang Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
22
|
Yang MR, Wu YW. Enhancing predictions of antimicrobial resistance of pathogens by expanding the potential resistance gene repertoire using a pan-genome-based feature selection approach. BMC Bioinformatics 2022; 23:131. [PMID: 35428201 PMCID: PMC9011928 DOI: 10.1186/s12859-022-04666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Predicting which pathogens might exhibit antimicrobial resistance (AMR) based on genomics data is one of the promising ways to swiftly and precisely identify AMR pathogens. Currently, the most widely used genomics approach is through identifying known AMR genes from genomic information in order to predict whether a pathogen might be resistant to certain antibiotic drugs. The list of known AMR genes, however, is still far from comprehensive and may result in inaccurate AMR pathogen predictions. We thus felt the need to expand the AMR gene set and proposed a pan-genome-based feature selection method to identify potential gene sets for AMR prediction purposes. Results By building pan-genome datasets and extracting gene presence/absence patterns from four bacterial species, each with more than 2000 strains, we showed that machine learning models built from pan-genome data can be very promising for predicting AMR pathogens. The gene set selected by the eXtreme Gradient Boosting (XGBoost) feature selection approach further improved prediction outcomes, and an incremental approach selecting subsets of XGBoost-selected features brought the machine learning model performance to the next level. Investigating selected gene sets revealed that on average about 50% of genes had no known function and very few of them were known AMR genes, indicating the potential of the selected gene sets to expand resistance gene repertoires. Conclusions We demonstrated that a pan-genome-based feature selection approach is suitable for building machine learning models for predicting AMR pathogens. The extracted gene sets may provide future clues to expand our knowledge of known AMR genes and provide novel hypotheses for inferring bacterial AMR mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04666-2.
Collapse
|
23
|
Li M, Sun C, Xu N, Bian P, Tian X, Wang X, Wang Y, Jia X, Heller R, Wang M, Wang F, Dai X, Luo R, Guo Y, Wang X, Yang P, Hu D, Liu Z, Fu W, Zhang S, Li X, Wen C, Lan F, Siddiki AZ, Suwannapoom C, Zhao X, Nie Q, Hu X, Jiang Y, Yang N. De Novo Assembly of 20 Chicken Genomes Reveals the Undetectable Phenomenon for Thousands of Core Genes on Microchromosomes and Subtelomeric Regions. Mol Biol Evol 2022; 39:msac066. [PMID: 35325213 PMCID: PMC9021737 DOI: 10.1093/molbev/msac066] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to construct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long noncoding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes were overrepresented on chromosomal subtelomeric regions and microchromosomes, surrounded by extremely high proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative genomics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which will contribute toward the understanding of avian evolution and the improvement of poultry breeding.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Naiyi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaomeng Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing 100193, China
| | - Xinzheng Jia
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Mingshan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Rongsong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangnan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Dexiang Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhenyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Shunjin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaochang Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Fangren Lan
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Amam Zonaed Siddiki
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong 4202, Bangladesh
| | | | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Center for Functional Genomics, Institute of Future Agriculture, Northwest A&F University, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
24
|
Sollitto M, Kenny NJ, Greco S, Tucci CF, Calcino AD, Gerdol M. Detecting Structural Variants and Associated Gene Presence-Absence Variation Phenomena in the Genomes of Marine Organisms. Methods Mol Biol 2022; 2498:53-76. [PMID: 35727540 DOI: 10.1007/978-1-0716-2313-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As complete genomes become easier to attain, even from previously difficult-to-sequence species, and as genomic resequencing becomes more routine, it is becoming obvious that genomic structural variation is more widespread than originally thought and plays an important role in maintaining genetic variation in populations. Structural variants (SVs) and associated gene presence-absence variation (PAV) can be important players in local adaptation, allowing the maintenance of genetic variation and taking part in other evolutionarily relevant phenomena. While recent studies have highlighted the importance of structural variation in Mollusca, the prevalence of this phenomenon in the broader context of marine organisms remains to be fully investigated.Here, we describe a straightforward and broadly applicable method for the identification of SVs in fully assembled diploid genomes, leveraging the same reads used for assembly. We also explain a gene PAV analysis protocol, which could be broadly applied to any species with a fully sequenced reference genome available. Although the strength of these approaches have been tested and proven in marine invertebrates, which tend to have high levels of heterozygosity, possibly due to their lifestyle traits, they are also applicable to other species across the tree of life, providing a ready means to begin investigations into this potentially widespread phenomena.
Collapse
Affiliation(s)
- Marco Sollitto
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy
| | - Nathan J Kenny
- Faculty of Health and Life Sciences, Oxford Brookes, Oxford, UK
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Samuele Greco
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy
| | | | - Andrew D Calcino
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Vienna, Austria
| | - Marco Gerdol
- Department of Life Sciences, Università degli Studi di Trieste, Trieste, Italy.
| |
Collapse
|
25
|
Gong M, Yang P, Fang W, Li R, Jiang Y. Building a cattle pan-genome using more de novo assemblies. J Genet Genomics 2022; 49:906-908. [DOI: 10.1016/j.jgg.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
|
26
|
Zhu F, Yin ZT, Wang Z, Smith J, Zhang F, Martin F, Ogeh D, Hincke M, Lin FB, Burt DW, Zhou ZK, Hou SS, Zhao QS, Li XQ, Ding SR, Li GS, Yang FX, Hao JP, Zhang Z, Lu LZ, Yang N, Hou ZC. Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication. Nat Commun 2021; 12:5932. [PMID: 34635656 PMCID: PMC8505442 DOI: 10.1038/s41467-021-26272-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/21/2021] [Indexed: 01/23/2023] Open
Abstract
Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.
Collapse
Affiliation(s)
- Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, KIH 8M5, Canada
| | - Fang-Bing Lin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zheng-Kui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shui-Sheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiang-Sen Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Si-Ran Ding
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Guan-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fang-Xi Yang
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Jing-Pin Hao
- Beijing Golden-Star Inc., Beijing, 100076, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
27
|
Johnsson M, Jungnickel MK. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet Sel Evol 2021; 53:67. [PMID: 34461824 PMCID: PMC8404348 DOI: 10.1186/s12711-021-00662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. RESULTS For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. CONCLUSIONS Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Melissa K. Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
28
|
Wang K, Hu H, Tian Y, Li J, Scheben A, Zhang C, Li Y, Wu J, Yang L, Fan X, Sun G, Li D, Zhang Y, Han R, Jiang R, Huang H, Yan F, Wang Y, Li Z, Li G, Liu X, Li W, Edwards D, Kang X. The chicken pan-genome reveals gene content variation and a promoter region deletion in IGF2BP1 affecting body size. Mol Biol Evol 2021; 38:5066-5081. [PMID: 34329477 PMCID: PMC8557422 DOI: 10.1093/molbev/msab231] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Domestication and breeding have reshaped the genomic architecture of chicken, but the retention and loss of genomic elements during these evolutionary processes remain unclear. We present the first chicken pan-genome constructed using 664 individuals, which identified an additional ∼66.5 Mb sequences that are absent from the reference genome (GRCg6a). The constructed pan-genome encoded 20,491 predicated protein-coding genes, of which higher expression level are observed in conserved genes relative to dispensable genes. Presence/absence variation (PAV) analyses demonstrated that gene PAV in chicken was shaped by selection, genetic drift, and hybridization. PAV-based GWAS identified numerous candidate mutations related to growth, carcass composition, meat quality, or physiological traits. Among them, a deletion in the promoter region of IGF2BP1 affecting chicken body size is reported, which is supported by functional studies and extra samples. This is the first time to report the causal variant of chicken body size QTL located at chromosome 27 which was repeatedly reported. Therefore, the chicken pan-genome is a useful resource for biological discovery and breeding. It improves our understanding of chicken genome diversity and provides materials to unveil the evolution history of chicken domestication.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, 6009 WA, Australia
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Chenxi Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yiyi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Junfeng Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Lan Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Xuewei Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Fengbin Yan
- Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Yanbin Wang
- Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, 6009 WA, Australia
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.,Henan Key laboratory for innovation and utilization of chicken germplasm resources,Zhengzhou, 450046, China
| |
Collapse
|
29
|
Lei L, Goltsman E, Goodstein D, Wu GA, Rokhsar DS, Vogel JP. Plant Pan-Genomics Comes of Age. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:411-435. [PMID: 33848428 DOI: 10.1146/annurev-arplant-080720-105454] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A pan-genome is the nonredundant collection of genes and/or DNA sequences in a species. Numerous studies have shown that plant pan-genomes are typically much larger than the genome of any individual and that a sizable fraction of the genes in any individual are present in only some genomes. The construction and interpretation of plant pan-genomes are challenging due to the large size and repetitive content of plant genomes. Most pan-genomes are largely focused on nontransposable element protein coding genes because they are more easily analyzed and defined than noncoding and repetitive sequences. Nevertheless, noncoding and repetitive DNA play important roles in determining the phenotype and genome evolution. Fortunately, it is now feasible to make multiple high-quality genomes that can be used to construct high-resolution pan-genomes that capture all the variation. However, assembling, displaying, and interacting with such high-resolution pan-genomes will require the development of new tools.
Collapse
Affiliation(s)
- Li Lei
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
| | - Eugene Goltsman
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
| | - David Goodstein
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
| | | | - Daniel S Rokhsar
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Calcino AD, Kenny NJ, Gerdol M. Single individual structural variant detection uncovers widespread hemizygosity in molluscs. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200153. [PMID: 33813894 PMCID: PMC8059565 DOI: 10.1098/rstb.2020.0153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
The advent of complete genomic sequencing has opened a window into genomic phenomena obscured by fragmented assemblies. A good example of these is the existence of hemizygous regions of autosomal chromosomes, which can result in marked differences in gene content between individuals within species. While these hemizygous regions, and presence/absence variation of genes that can result, are well known in plants, firm evidence has only recently emerged for their existence in metazoans. Here, we use recently published, complete genomes from wild-caught molluscs to investigate the prevalence of hemizygosity across a well-known and ecologically important clade. We show that hemizygous regions are widespread in mollusc genomes, not clustered in individual chromosomes, and often contain genes linked to transposition, DNA repair and stress response. With targeted investigations of HSP70-12 and C1qDC, we also show how individual gene families are distributed within pan-genomes. This work suggests that extensive pan-genomes are widespread across the conchiferan Mollusca, and represent useful tools for genomic evolution, allowing the maintenance of additional genetic diversity within the population. As genomic sequencing and re-sequencing becomes more routine, the prevalence of hemizygosity, and its impact on selection and adaptation, are key targets for research across the tree of life. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Andrew D. Calcino
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Nathan J. Kenny
- Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| |
Collapse
|
31
|
Novel functional sequences uncovered through a bovine multiassembly graph. Proc Natl Acad Sci U S A 2021; 118:2101056118. [PMID: 33972446 DOI: 10.1073/pnas.2101056118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many genomic analyses start by aligning sequencing reads to a linear reference genome. However, linear reference genomes are imperfect, lacking millions of bases of unknown relevance and are unable to reflect the genetic diversity of populations. This makes reference-guided methods susceptible to reference-allele bias. To overcome such limitations, we build a pangenome from six reference-quality assemblies from taurine and indicine cattle as well as yak. The pangenome contains an additional 70,329,827 bases compared to the Bos taurus reference genome. Our multiassembly approach reveals 30 and 10.1 million bases private to yak and indicine cattle, respectively, and between 3.3 and 4.4 million bases unique to each taurine assembly. Utilizing transcriptomes from 56 cattle, we show that these nonreference sequences encode transcripts that hitherto remained undetected from the B. taurus reference genome. We uncover genes, primarily encoding proteins contributing to immune response and pathogen-mediated immunomodulation, differentially expressed between Mycobacterium bovis-infected and noninfected cattle that are also undetectable in the B. taurus reference genome. Using whole-genome sequencing data of cattle from five breeds, we show that reads which were previously misaligned against the Bos taurus reference genome now align accurately to the pangenome sequences. This enables us to discover 83,250 polymorphic sites that segregate within and between breeds of cattle and capture genetic differentiation across breeds. Our work makes a so-far unused source of variation amenable to genetic investigations and provides methods and a framework for establishing and exploiting a more diverse reference genome.
Collapse
|
32
|
Sielemann K, Weisshaar B, Pucker B. Reference-based QUantification Of gene Dispensability (QUOD). PLANT METHODS 2021; 17:18. [PMID: 33563309 PMCID: PMC7871624 DOI: 10.1186/s13007-021-00718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/03/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Dispensability of genes in a phylogenetic lineage, e.g. a species, genus, or higher-level clade, is gaining relevance as most genome sequencing projects move to a pangenome level. Most analyses classify genes as core genes, which are present in all investigated individual genomes, and dispensable genes, which only occur in a single or a few investigated genomes. The binary classification as 'core' or 'dispensable' is often based on arbitrary cutoffs of presence/absence in the analysed genomes. Even when extended to 'conditionally dispensable', this concept still requires the assignment of genes to distinct groups. RESULTS Here, we present a new method which overcomes this distinct classification by quantifying gene dispensability and present a dedicated tool for reference-based QUantification Of gene Dispensability (QUOD). As a proof of concept, sequence data of 966 Arabidopsis thaliana accessions (Ath-966) were processed to calculate a gene-specific dispensability score for each gene based on normalised coverage in read mappings. We validated this score by comparison of highly conserved Benchmarking Universal Single Copy Orthologs (BUSCOs) to all other genes. The average scores of BUSCOs were significantly lower than the scores of non-BUSCOs. Analysis of variation demonstrated lower variation values between replicates of a single accession than between iteratively, randomly selected accessions from the whole dataset Ath-966. Functional investigations revealed defense and antimicrobial response genes among the genes with high-dispensability scores. CONCLUSIONS Instead of classifying a gene as core or dispensable, QUOD assigns a dispensability score to each gene. Hence, QUOD facilitates the identification of candidate dispensable genes, associated with high dispensability scores, which often underlie lineage-specific adaptation to varying environmental conditions.
Collapse
Affiliation(s)
- Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Boas Pucker
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Gerdol M, Moreira R, Cruz F, Gómez-Garrido J, Vlasova A, Rosani U, Venier P, Naranjo-Ortiz MA, Murgarella M, Greco S, Balseiro P, Corvelo A, Frias L, Gut M, Gabaldón T, Pallavicini A, Canchaya C, Novoa B, Alioto TS, Posada D, Figueras A. Massive gene presence-absence variation shapes an open pan-genome in the Mediterranean mussel. Genome Biol 2020; 21:275. [PMID: 33168033 PMCID: PMC7653742 DOI: 10.1186/s13059-020-02180-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/15/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically relevant edible marine bivalve, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other bivalves. Although these traits have been recently linked with the maintenance of a high genetic variation within natural populations, the factors underlying the evolutionary success of this species remain unclear. RESULTS Here, after the assembly of a 1.28-Gb reference genome and the resequencing of 14 individuals from two independent populations, we reveal a complex pan-genomic architecture in M. galloprovincialis, with a core set of 45,000 genes plus a strikingly high number of dispensable genes (20,000) subject to presence-absence variation, which may be entirely missing in several individuals. We show that dispensable genes are associated with hemizygous genomic regions affected by structural variants, which overall account for nearly 580 Mb of DNA sequence not included in the reference genome assembly. As such, this is the first study to report the widespread occurrence of gene presence-absence variation at a whole-genome scale in the animal kingdom. CONCLUSIONS Dispensable genes usually belong to young and recently expanded gene families enriched in survival functions, which might be the key to explain the resilience and invasiveness of this species. This unique pan-genome architecture is characterized by dispensable genes in accessory genomic regions that exceed by orders of magnitude those observed in other metazoans, including humans, and closely mirror the open pan-genomes found in prokaryotes and in a few non-metazoan eukaryotes.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Anna Vlasova
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Umberto Rosani
- Department of Biology, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Paola Venier
- Department of Biology, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Miguel A. Naranjo-Ortiz
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Murgarella
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Samuele Greco
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
- Norce Norwegian Research Centre AS, Bergen, Norway
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- New York Genome Center, New York, NY 10013 USA
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Toni Gabaldón
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Current address: Barelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB), 08034 Barcelona, Spain
| | - Alberto Pallavicini
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
- Anton Dohrn Zoological Station, 80121 Villa Comunale, Naples, Italy
| | - Carlos Canchaya
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Tyler S. Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
34
|
Hu Y, Xia H, Li M, Xu C, Ye X, Su R, Zhang M, Nash O, Sonstegard TS, Yang L, Liu GE, Zhou Y. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics 2020; 21:682. [PMID: 33004001 PMCID: PMC7528262 DOI: 10.1186/s12864-020-07097-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bos taurus and Bos indicus are two main sub-species of cattle. However, the differential copy number variations (CNVs) between them are not yet well studied. RESULTS Based on the new high-quality cattle reference genome ARS-UCD1.2, we identified 13,234 non-redundant CNV regions (CNVRs) from 73 animals of 10 cattle breeds (4 Bos taurus and 6 Bos indicus), by integrating three detection strategies. While 6990 CNVRs (52.82%) were shared by Bos taurus and Bos indicus, large CNV differences were discovered between them and these differences could be used to successfully separate animals into two subspecies. We found that 2212 and 538 genes uniquely overlapped with either indicine-specific CNVRs and or taurine-specific CNVRs, respectively. Based on FST, we detected 16 candidate lineage-differential CNV segments (top 0.1%) under selection, which overlapped with eight genes (CTNNA1, ENSBTAG00000004415, PKN2, BMPER, PDE1C, DNAJC18, MUSK, and PLCXD3). Moreover, we obtained 1.74 Mbp indicine-specific sequences, which could only be mapped on the Bos indicus reference genome UOA_Brahman_1. We found these sequences and their associated genes were related to heat resistance, lipid and ATP metabolic process, and muscle development under selection. We further analyzed and validated the top significant lineage-differential CNV. This CNV overlapped genes related to muscle cell differentiation, which might be generated from a retropseudogene of CTH but was deleted along Bos indicus lineage. CONCLUSIONS This study presents a genome wide CNV comparison between Bos taurus and Bos indicus. It supplied essential genome diversity information for understanding of adaptation and phenotype differences between the Bos taurus and Bos indicus populations.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowei Ye
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruixue Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mai Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | | | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA.
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new reference. NATURE PLANTS 2020; 6:914-920. [PMID: 32690893 DOI: 10.1038/s41477-020-0733-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 05/18/2023]
Abstract
Recent years have seen a surge in plant genome sequencing projects and the comparison of multiple related individuals. The high degree of genomic variation observed led to the realization that single reference genomes do not represent the diversity within a species, and led to the expansion of the pan-genome concept. Pan-genomes represent the genomic diversity of a species and includes core genes, found in all individuals, as well as variable genes, which are absent in some individuals. Variable gene annotations often show similarities across plant species, with genes for biotic and abiotic stress commonly enriched within variable gene groups. Here we review the growth of pan-genomics in plants, explore the origins of gene presence and absence variation, and show how pan-genomes can support plant breeding and evolution studies.
Collapse
Affiliation(s)
- Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
36
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
37
|
Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics Comes of Age: From Bacteria to Plant and Animal Applications. Trends Genet 2019; 36:132-145. [PMID: 31882191 DOI: 10.1016/j.tig.2019.11.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 02/01/2023]
Abstract
The pangenome refers to a collection of genomic sequence found in the entire species or population rather than in a single individual; the sequence can be core, present in all individuals, or accessory (variable or dispensable), found in a subset of individuals only. While pangenomic studies were first undertaken in bacterial species, developments in genome sequencing and assembly approaches have allowed construction of pangenomes for eukaryotic organisms, fungi, plants, and animals, including two large-scale human pangenome projects. Analysis of the these pangenomes revealed key differences, most likely stemming from divergent evolutionary histories, but also surprising similarities.
Collapse
Affiliation(s)
- Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|