1
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Li J, Zhang H, Du Q, Gu J, Wu J, Liu Q, Li Z, Zhang T, Xu J, Xie R. Research Progress on TRPA1 in Diseases. J Membr Biol 2023; 256:301-316. [PMID: 37039840 PMCID: PMC10667463 DOI: 10.1007/s00232-023-00277-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023]
Abstract
For a long time, the physiological activity of TRP ion channels and the response to various stimuli have been the focus of attention, and the physiological functions mediated by ion channels have subtle links with the occurrence of various diseases. Our group has been engaged in the study of ion channels. In recent years, the report rate of TRPA1, the only member of the TRPA subfamily in the newly described TRP channel, has been very high. TRPA1 channels are not only abundantly expressed in peptidergic nociceptors but are also found in many nonneuronal cell types and tissues, and through the regulation of Ca2+ influx, various neuropeptides and signaling pathways are involved in the regulation of nerves, respiration, circulation, and various diseases and inflammation throughout the body. In this review, we mainly summarize the effects of TRPA1 on various systems in the body, which not only allows us to have a more systematic and comprehensive understanding of TRPA1 but also facilitates more in-depth research on it in the future.
Collapse
Affiliation(s)
- Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hongfei Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Junyu Gu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Huang L, Guo B, Yan J, Wei H, Liu S, Li Y. CircHSPG2 knockdown attenuates hypoxia-induced apoptosis, inflammation, and oxidative stress in human AC16 cardiomyocytes by regulating the miR-1184/MAP3K2 axis. Cell Stress Chaperones 2023; 28:177-190. [PMID: 36810972 PMCID: PMC10050264 DOI: 10.1007/s12192-023-01328-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Circular RNAs (circRNAs) have been identified as vital regulators in cardiovascular diseases, including acute myocardial infarction (AMI). In this study, the function and mechanism of circRNA heparan sulfate proteoglycan 2 (circHSPG2) in hypoxia-induced injury in AC16 cardiomyocytes were investigated. AC16 cells were stimulated with hypoxia to establish an AMI cell model in vitro. Real-time quantitative PCR and western blot assays were performed to quantify the expression levels of circHSPG2, microRNA-1184 (miR-1184), and mitogen-activated protein kinase kinase kinase 2 (MAP3K2). Counting Kit-8 (CCK-8) assay was used to measure cell viability. Flow cytometry was performed to detect cell cycle and apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the expression of inflammatory factors. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to analyze the relationship between miR-1184 and circHSPG2 or MAP3K2. In AMI serum, circHSPG2 and MAP3K2 mRNA were highly expressed and miR-1184 was down-regulated. Hypoxia treatment elevated HIF1α expression and repressed cell growth and glycolysis. Moreover, hypoxia promoted cell apoptosis, inflammation, and oxidative stress in AC16 cells. Hypoxia-induced circHSPG2 expression in AC16 cells. CircHSPG2 knockdown alleviated hypoxia-induced AC16 cell injury. CircHSPG2 directly targeted miR-1184, and miR-1184 targeted and suppressed MAP3K2. Inhibition of miR-1184 or overexpression of MAP3K2 abolished the alleviated effect of circHSPG2 knockdown on hypoxia-induced AC16 cell injury. Overexpression of miR-1184 relieved hypoxia-induced impairment in AC16 cells by MAP3K2. CircHSPG2 could regulate MAP3K2 expression through miR-1184. CircHSPG2 knockdown protected AC16 cells from hypoxia-induced injury by regulating the miR-1184/MAP3K2 cascade.
Collapse
Affiliation(s)
- Liu Huang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Bingyan Guo
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Jie Yan
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Huiqing Wei
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Suyun Liu
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China
| | - Yongjun Li
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, China.
| |
Collapse
|
4
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Chen C, Wang Z, Ding Y, Qin Y. Manipulating T-cell metabolism to enhance immunotherapy in solid tumor. Front Immunol 2022; 13:1090429. [PMID: 36618408 PMCID: PMC9812959 DOI: 10.3389/fimmu.2022.1090429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolism is not only essential for tumor cells to sustain their rapid growth and proliferation, but also crucial to maintain T cell fitness and robust immunity. Dysregulated metabolism has been recognized as a hallmark of cancer, which provides survival advantages for tumor cells under stress conditions. Also, emerging evidence suggests that metabolic reprogramming impacts the activation, differentiation, function, and exhaustion of T cells. Normal stimulation of resting T cells promotes the conversion of catabolic and oxidative metabolism to aerobic glycolysis in effector T cells, and subsequently back to oxidative metabolism in memory T cells. These metabolic transitions profoundly affect the trajectories of T-cell differentiation and fate. However, these metabolic events of T cells could be dysregulated by their interplays with tumor or the tumor microenvironment (TME). Importantly, metabolic competition in the tumor ecosystem is a new mechanism resulting in strong suppression of effector T cells. It is appreciated that targeting metabolic reprogramming is a promising way to disrupt the hypermetabolic state of tumor cells and enhance the capacity of immune cells to obtain nutrients. Furthermore, immunotherapies, such as immune checkpoint inhibitor (ICI), adoptive cell therapy (ACT), and oncolytic virus (OV) therapy, have significantly refashioned the clinical management of solid tumors, they are not sufficiently effective for all patients. Understanding how immunotherapy affects T cell metabolism provides a bright avenue to better modulate T cell anti-tumor response. In this review, we provide an overview of the cellular metabolism of tumor and T cells, provide evidence on their dynamic interaction, highlight how metabolic reprogramming of tumor and T cells regulate the anti-tumor responses, describe T cell metabolic patterns in the context of ICI, ACT, and OV, and propose hypothetical combination strategies to favor potent T cell functionality.
Collapse
|
6
|
Ihim SA, Abubakar SD, Zian Z, Sasaki T, Saffarioun M, Maleknia S, Azizi G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol 2022; 13:919973. [PMID: 36032110 PMCID: PMC9410767 DOI: 10.3389/fimmu.2022.919973] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a potent pro-inflammatory cytokine involved in host defense against infections and regulates the innate and acquired immune response. IL-18 is produced by both hematopoietic and non-hematopoietic cells, including monocytes, macrophages, keratinocytes and mesenchymal cell. IL-18 could potentially induce inflammatory and cytotoxic immune cell activities leading to autoimmunity. Its elevated levels have been reported in the blood of patients with some immune-related diseases, including rheumatoid arthritis, systemic lupus erythematosus, type I diabetes mellitus, atopic dermatitis, psoriasis, and inflammatory bowel disease. In the present review, we aimed to summarize the biological properties of IL-18 and its pathological role in different autoimmune diseases. We also reported some monoclonal antibodies and drugs targeting IL-18. Most of these monoclonal antibodies and drugs have only produced partial effectiveness or complete ineffectiveness in vitro, in vivo and human studies. The ineffectiveness of these drugs targeting IL-18 may be largely due to the loophole caused by the involvement of other cytokines and proteins in the signaling pathway of many inflammatory diseases besides the involvement of IL-18. Combination drug therapies, that focus on IL-18 inhibition, in addition to other cytokines, are highly recommended to be considered as an important area of research that needs to be explored.
Collapse
Affiliation(s)
- Stella Amarachi Ihim
- Department of Molecular and Cellular Pharmacology, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Sharafudeen Dahiru Abubakar
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
- Department of Medical Laboratory Science, College of Medical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Takanori Sasaki
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Gholamreza Azizi,
| |
Collapse
|
7
|
Lei H, Yang L, Xu H, Wang Z, Li X, Liu M, Wu Y. Ubiquitin-specific protease 47 regulates intestinal inflammation through deubiquitination of TRAF6 in epithelial cells. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1624-1635. [PMID: 35235149 DOI: 10.1007/s11427-021-2040-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Deubiquitinates (DUBs) alter the stabilities, localizations or activities of substrates by removing their ubiquitin conjugates, which are closely related to the development of inflammatory response. Here, we show that ubiquitin-specific protease 47 (USP47) prevents inflammation development in inflammatory bowel disease (IBD). Compared with wild-type mice, Usp47 knockout mice are more susceptible to dextran sodium sulfate (DSS)-induced acute and chronic colitis with higher inflammatory cytokines expression and severe intestinal tissue damage. Chimeric mouse experiments suggest that non-hematopoietic cells mainly contribute to the phenotype. And, DSS-induced colitis of the Usp47 knockout mice depends on commensal bacteria. Mechanistically, down-regulation of USP47 aggravates the activation of NF-κB signaling pathway by increasing the K63-linked poly-ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) in intestinal epithelial cells. Furthermore, the expression of USP47, negatively correlated with the degree of inflammation, is lower at colonic inflammatory lesions than that non-inflammatory sites from the intestine from ulcerative colitis (UC) and Crohn's disease (CD) patients. These data, taken together, indicate that USP47 regulates intestinal inflammation through de-ubiquitination of K63-linked poly-ubiquitination TRAF6 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiangyun Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Meng Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Mendelian randomization study for the roles of IL-18 and IL-1 receptor antagonist in the development of inflammatory bowel disease. Int Immunopharmacol 2022; 110:109020. [PMID: 35843146 DOI: 10.1016/j.intimp.2022.109020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS IL-1 and IL-18 play important roles in intestine barrier integrity maintenance and inflammatory response. However, their net effects on the risk of IBD are still inconclusive. Here, we used Mendelian randomization (MR) approaches to investigate the causal associations of IL-18 and IL-1Ra (receptor antagonist) on the risks of IBD and subtypes. METHODS For IL-18, both three-sample and two-sample MR approaches were used for the causal inferences. In three-sample MR, three single nucleotide polymorphisms (SNPs) and the effect values were extracted from two quantitative trait loci (pQTL) datasets with non-overlapping populations. In two-sample MR, we extracted genetic instruments information from the same larger pQTL dataset. For IL-1Ra, we applied the two-sample MR method with summary-statistics from the larger pQTL dataset. Summary-level results of three large IBD/CD/UC genome-wide association studies in European ancestry were employed. Inverse-variance weighted method, various sensitivity analyses and meta-analysis were performed to give causal estimates, detect heterogeneity and correct for outliers. RESULTS We observed consistent positive causal effects of IL-18 on all three major outcomes using three-sample MR, with meta-analyses odds ratios (ORs) equal to 1.240 (IBD), 1.199 (CD) and 1.274 (UC) respectively. The two-sample MR demonstrated similar results. Moreover, genetically predicted IL-1Ra is inversely associated with the risk of IBD/UC/CD with ORs equal to 0.915 (IBD), 0.902 (CD) and 0.899 (UC) respectively in meta-analyses. CONCLUSIONS This study suggested genetically predicted IL-18 and IL-1Ra level are causally associated with an increased and decreased risk of IBD and subtypes.
Collapse
|
9
|
Liu J, Tang G, Liu W, Zhou Y, Fan C, Zhang W. MiR-20a-5p facilitates cartilage repair in osteoarthritis via suppressing mitogen-activated protein kinase kinase kinase 2. Bioengineered 2022; 13:13801-13814. [PMID: 35707845 PMCID: PMC9276018 DOI: 10.1080/21655979.2022.2084270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) chondrogenic differentiation contributes to the treatment of osteoarthritis (OA). Numerous studies have indicated that microRNAs (miRNAs) regulate the pathogenesis and development of multiple disorders, including OA. Nevertheless, the role of miR-20a-5p in OA remains obscure. Forty male C57BL/6 mice were divided into four groups and were surgically induced OA or underwent sham surgery in the presence or absence of miR-20a-5p. Flow cytometry was implemented to detect surface markers of BMSCs. Reverse transcription quantitative polymerase chain reaction revealed the upregulation of miR-20a-5p during BMSC chondrogenic differentiation. Western blotting displayed that miR-20a-5p inhibition decreased protein levels of cartilage matrix markers but enhanced those of catabolic and hypertrophic chondrocyte markers in BMSCs. Alcian blue staining, hematoxylin‑eosin staining and micro-CT revealed that miR-20a-5p inhibition restrained chondrogenic differentiation and miR-20a-5p overexpression promoted the repair of damaged cartilage and subchondral bone, respectively. Luciferase reporter assay identified that mitogen activated protein kinase kinase kinase 2 (Map3k2) was a target of miR-20a-5p in BMSCs. Moreover, the expression of miR-20a-5p and Map3k2 was negatively correlated in murine cartilage tissues. Knocking down Map3k2 could rescue the suppressive influence of miR-20a-5p inhibition on chondrogenic differentiation of BMSCs. In conclusion, miR-20a-5p facilitates BMSC chondrogenic differentiation and contributes to cartilage repair in OA by suppressing Map3k2.
Collapse
Affiliation(s)
- Jiazhi Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guo Tang
- Department of Orthopaedics, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Wenjun Liu
- Department of Orthopaedics, South Hospital of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhou
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Shou X, Wang Y, Zhang X, Zhang Y, Yang Y, Duan C, Yang Y, Jia Q, Yuan G, Shi J, Shi S, Cui H, Hu Y. Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:727608. [PMID: 35237152 PMCID: PMC8883437 DOI: 10.3389/fphar.2022.727608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a disease with complex pathological mechanisms. We explored the potential molecular mechanisms behind the therapeutic functions of Qingzi Zhitong decoction (QZZTD) in the treatment of UC by network pharmacology and molecular docking. QZZTD is a formula of Chinese traditional medicine consisting of 10 herbs. The potential active ingredients of QZZTD and their target genes were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and UC-related target genes were obtained from GeneCards and OMIM databases. A total of 138 co-identified target genes were obtained by plotting the intersection target Venn diagram, and then the STRING database and Cytoscape software were used to establish protein-protein interaction networks and herb-ingredient-target networks. Four key active compounds and nine key proteins were identified. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the biological functions of potential target genes were associated with DNA transcription, signaling receptor and ligand activity, cytokine activity, cellular autophagy, and antioxidant pathways, with related pathways involving the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, advanced glycosylation end product (AGE)-RAGE signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway. Moreover, the binding activities of key target genes and essential active compounds of Chinese herbal medicines in QZZTD were further validated by molecular docking. This demonstrated that quercetin, luteolin, hyndarin, and beta-sitosterol had good binding to eight key proteins, and Akt1 was the target protein with the best binding activity, suggesting that Akt1 could be the essential mediator responsible for signaling transduction after QZZTD administration. The rat experiment verified that QZZTD inhibited PI3K-Akt pathway activation and reduced inflammation in UC. In conclusion, our study suggested four potential key active components, including quercetin, were identified in QZZTD, which could interact with Akt1 and modulate the activation of the PI3K-Akt pathway. The other three pathways may also be involved in the signaling transduction induced by QZZTD in the treatment of UC.
Collapse
Affiliation(s)
- Xintian Shou
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yumeng Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuesong Zhang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanju Zhang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yan Yang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chenglin Duan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qiulei Jia
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jingjing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Shuqing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hanming Cui
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yuanhui Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
11
|
Wu N, Sun H, Zhao X, Zhang Y, Tan J, Qi Y, Wang Q, Ng M, Liu Z, He L, Niu X, Chen L, Liu Z, Li HB, Zeng YA, Roulis M, Liu D, Cheng J, Zhou B, Ng LG, Zou D, Ye Y, Flavell RA, Ginhoux F, Su B. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature 2021; 592:606-610. [PMID: 33658717 DOI: 10.1038/s41586-021-03283-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/25/2021] [Indexed: 01/07/2023]
Abstract
Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.
Collapse
Affiliation(s)
- Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyun Zhao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Microbiota & Immunological Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiduo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Arial Zeng
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Manolis Roulis
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Dou Liu
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard A Flavell
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,The State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Center for Microbiota & Immunological Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, Liang J, Tang Y, Su M, Luo X, Yang Y, Shi Y, Wang H, Zhou Y, Liao Q. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20:28. [PMID: 33546704 PMCID: PMC7863491 DOI: 10.1186/s12943-021-01316-8] [Citation(s) in RCA: 532] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The overlapping metabolic reprogramming of cancer and immune cells is a putative determinant of the antitumor immune response in cancer. Increased evidence suggests that cancer metabolism not only plays a crucial role in cancer signaling for sustaining tumorigenesis and survival, but also has wider implications in the regulation of antitumor immune response through both the release of metabolites and affecting the expression of immune molecules, such as lactate, PGE2, arginine, etc. Actually, this energetic interplay between tumor and immune cells leads to metabolic competition in the tumor ecosystem, limiting nutrient availability and leading to microenvironmental acidosis, which hinders immune cell function. More interestingly, metabolic reprogramming is also indispensable in the process of maintaining self and body homeostasis by various types of immune cells. At present, more and more studies pointed out that immune cell would undergo metabolic reprogramming during the process of proliferation, differentiation, and execution of effector functions, which is essential to the immune response. Herein, we discuss how metabolic reprogramming of cancer cells and immune cells regulate antitumor immune response and the possible approaches to targeting metabolic pathways in the context of anticancer immunotherapy. We also describe hypothetical combination treatments between immunotherapy and metabolic intervening that could be used to better unleash the potential of anticancer therapies.
Collapse
Affiliation(s)
- Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Lu Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.,University of South China, 421001, Hengyang, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yingrui Shi
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, 283 Tongzipo Road, 410013, Changsha, Hunan, China.
| |
Collapse
|
13
|
Le Poole IC. Myron Gordon Award paper: Microbes, T-cell diversity and pigmentation. Pigment Cell Melanoma Res 2021; 34:244-255. [PMID: 33438345 DOI: 10.1111/pcmr.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL, USA
| |
Collapse
|