1
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
2
|
Wu E, Guo X, Teng X, Zhang R, Li F, Cui Y, Zhang D, Liu Q, Luo J, Wang J, Chen R. Discovery of Plasma Membrane-Associated RNAs through APEX-seq. Cell Biochem Biophys 2021; 79:905-917. [PMID: 34028638 DOI: 10.1007/s12013-021-00991-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
In addition to nucleic acids, a variety of other biomolecules have also been found on the plasma membrane. Although researchers have realized that RNA has the ability to bind to membrane vesicles in vitro, little is known about whether and how RNA connects to the plasma membrane of the cell. The combination of high-throughput sequencing and in situ labeling methods provides an innovative approach for large-scale identification of subcellular RNAs. Here, we applied the recently published method APEX-seq and identified 75 RNAs related to the plasma membrane, in which lncRNA PMAR72 (plasma membrane-associated RNA AL121772.1) has a considerable affinity with sphingomyelin (SM) and localizes within distinct membrane foci. Our findings will provide some new evidence to elaborate the relationship between RNA and the plasma membrane of mammalian cells.
Collapse
Affiliation(s)
- Erzhong Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xuzhen Guo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruijin Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fahui Li
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya Cui
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jiangyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Saeed AFUH, Chan C, Guan H, Gong B, Guo P, Cheng X, Ouyang S. Structural Insights into gp16 ATPase in the Bacteriophage ϕ29 DNA Packaging Motor. Biochemistry 2021; 60:886-897. [PMID: 33689296 DOI: 10.1021/acs.biochem.0c00935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biological motors, ubiquitous in living systems, convert chemical energy into different kinds of mechanical motions critical to cellular functions. Gene product 16 (gp16) in bacteriophage ϕ29 is among the most powerful biomotors known, which adopts a multisubunit ring-shaped structure and hydrolyzes ATP to package double-stranded DNA (dsDNA) into a preformed procapsid. Here we report the crystal structure of the C-terminal domain of gp16 (gp16-CTD). Structure-based alignment and molecular dynamics simulations revealed an essential binding surface of gp16-CTD for prohead RNA, a unique component of the motor complex. Furthermore, our simulations highlighted a dynamic interplay between the N-terminal domain and the CTD of gp16, which may play a role in driving movement of DNA into the procapsid. Lastly, we assembled an atomic structural model of the complete ϕ29 dsDNA packaging motor complex by integrating structural and experimental data from multiple sources. Collectively, our findings provided a refined inchworm-revolution model for dsDNA translocation in bacteriophage ϕ29 and suggested how the individual domains of gp16 work together to power such translocation.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Chun Chan
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hongxin Guan
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bing Gong
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535000, China
| | - Peixuan Guo
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Center for RNA Nanobiotechnology and Nanomedicine, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaolin Cheng
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
4
|
Zhang XE. Nanobiology-Symphony of bioscience and nanoscience. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1099-1102. [PMID: 32557290 DOI: 10.1007/s11427-020-1741-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|