1
|
Park C, Park OJ, Kwon Y, Lee J, Yun CH, Han SH. Differential Regulatory Effects of Probiotics on Bone Metabolism by the Status of Bone Health and Delivery Route. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10441-x. [PMID: 39730860 DOI: 10.1007/s12602-024-10441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes. Intragastric administration of Lactiplantibacillus plantarum to ovariectomized mouse models for mimicking post-menopausal osteoporosis in humans substantially ameliorated osteoporosis by increasing bone and mineral density. In contrast, such effects did not occur in normal healthy mice under the same condition. Interestingly, however, intraperitoneal administration of L. plantarum induced bone destruction by increasing osteoclast differentiation and decreasing osteoblast differentiation. Furthermore, when L. plantarum was implanted into mouse calvarial bone, it potently augmented bone resorption. Concordantly, L. plantarum upregulated osteoclastogenesis and downregulated osteoblastogenesis in in vitro experiments. These results suggest that L. plantarum can have distinct roles in the regulation of bone metabolism depending on bone health and the delivery route.
Collapse
Affiliation(s)
- Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jueun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang C, Han L, Dong K, Zhang Q, Liu Z. Reply to: LRRK2 is not required for lysozyme expression in Paneth cells. Nat Immunol 2024; 25:2040-2042. [PMID: 39379659 DOI: 10.1038/s41590-024-01968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Chengye Zhang
- Institute of Immunology, School of Basic Medicine, Tsinghua University, Beijing, China
| | - Lizhuang Han
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Kemeng Dong
- Institute of Immunology, School of Basic Medicine, Tsinghua University, Beijing, China
| | - Qin Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Zhihua Liu
- Institute of Immunology, School of Basic Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Zhang C, Xiang C, Zhou K, Liu X, Qiao G, Zhao Y, Dong K, Sun K, Liu Z. Intestinal lysozyme1 deficiency alters microbiota composition and impacts host metabolism through the emergence of NAD +-secreting ASTB Qing110 bacteria. mSystems 2024; 9:e0121423. [PMID: 38364095 PMCID: PMC10949482 DOI: 10.1128/msystems.01214-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
The intestine plays a pivotal role in nutrient absorption and host defense against pathogens, orchestrated in part by antimicrobial peptides secreted by Paneth cells. Among these peptides, lysozyme has multifaceted functions beyond its bactericidal activity. Here, we uncover the intricate relationship between intestinal lysozyme, the gut microbiota, and host metabolism. Lysozyme deficiency in mice led to altered body weight, energy expenditure, and substrate utilization, particularly on a high-fat diet. Interestingly, these metabolic benefits were linked to changes in the gut microbiota composition. Cohousing experiments revealed that the metabolic effects of lysozyme deficiency were microbiota-dependent. 16S rDNA sequencing highlighted differences in microbial communities, with ASTB_g (OTU60) highly enriched in lysozyme knockout mice. Subsequently, a novel bacterium, ASTB Qing110, corresponding to ASTB_g (OTU60), was isolated. Metabolomic analysis revealed that ASTB Qing110 secreted high levels of NAD+, potentially influencing host metabolism. This study sheds light on the complex interplay between intestinal lysozyme, the gut microbiota, and host metabolism, uncovering the potential role of ASTB Qing110 as a key player in modulating metabolic outcomes. IMPORTANCE The impact of intestinal lumen lysozyme on intestinal health is complex, arising from its multifaceted interactions with the gut microbiota. Lysozyme can both mitigate and worsen certain health conditions, varying with different scenarios. This underscores the necessity of identifying the specific bacterial responses elicited by lysozyme and understanding their molecular foundations. Our research reveals that a deficiency in intestinal lysozyme1 may offer protection against diet-induced obesity by altering bacterial populations. We discovered a strain of bacterium, ASTB Qing110, which secretes NAD+ and is predominantly found in lyz1-deficient mice. Qing110 demonstrates positive effects in both C. elegans and mouse models of ataxia telangiectasia. This study sheds light on the intricate role of lysozyme in influencing intestinal health.
Collapse
Affiliation(s)
- Chengye Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Chen Xiang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kaichen Zhou
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xingchen Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Guofeng Qiao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Yabo Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Kemeng Dong
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ke Sun
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihua Liu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Zhou J, Ouyang J, Gao Z, Qin H, Jun W, Shi T. MagMD: database summarizing the Metabolic action of gut Microbiota to Drugs. Comput Struct Biotechnol J 2022; 20:6427-6430. [DOI: 10.1016/j.csbj.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
|