1
|
Ribeiro AB, de Melo MRS, de Melo Junqueira M, Rodrigues MGL, de Souza TO, Fernandes G, Santos MFC, Ambrósio SR, Bastos JK, Tavares DC. Efficacy and safety of guttiferone E in melanoma-bearing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5265-5274. [PMID: 38270618 DOI: 10.1007/s00210-024-02962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Melanoma, an aggressive and potentially fatal skin cancer, is constrained by immunosuppression, resistance, and high toxicity in its treatment. Consequently, there is an urgent need for innovative antineoplastic agents. Therefore, this study investigated the antimelanoma potential of guttiferone E (GE). In an allogeneic murine B16 melanoma model, GE was administered subcutaneously and intraperitoneally. Antitumor evaluation included tumor volume/weight measurements and histopathological and immunohistochemical analysis. Furthermore, the toxicity of the treatments was evaluated through body/organ weights, biochemical parameters, and genotoxicity. Subcutaneous administration of 20 mg/kg of GE resulted in a significant reduction in both tumor volume and weight, effectively suppressing melanoma cell proliferation as evidenced by a decrease in mitotic figures. The tumor growth inhibition rate was equivalent to 54%. This treatment upregulated cleaved caspase-3, indicating apoptosis induction. On the other hand, intraperitoneal administration of GE showed no antimelanoma effect. Remarkably, GE treatments exhibited no toxicity, evidenced by non-significant differences in body weight gain, as well as organ weight, biochemical parameters of nephrotoxicity and hepatotoxicity, and genotoxic damage. This study revealed, for the first time, the efficacy of subcutaneous administration of GE in reducing melanoma, in the absence of toxicity. Furthermore, it was observed that the apoptotic signaling pathway is involved in the antimelanoma property of GE. These findings offer valuable insights for further exploring GE's therapeutic applications in melanoma treatment.
Collapse
Affiliation(s)
- Arthur Barcelos Ribeiro
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| | - Matheus Reis Santos de Melo
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Marcela de Melo Junqueira
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Mônica Garcia Leal Rodrigues
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Thiago Olimpio de Souza
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Gabriela Fernandes
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | | | - Sérgio Ricardo Ambrósio
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Denise Crispim Tavares
- University of Franca, Avenida Dr. Armando Salles Oliveira, 201, Parque Universitário, Franca, São Paulo, 14404-600, Brazil.
| |
Collapse
|
2
|
Ma K, Gauthier LO, Cheung F, Huang S, Lek M. High-throughput assays to assess variant effects on disease. Dis Model Mech 2024; 17:dmm050573. [PMID: 38940340 PMCID: PMC11225591 DOI: 10.1242/dmm.050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Interpreting the wealth of rare genetic variants discovered in population-scale sequencing efforts and deciphering their associations with human health and disease present a critical challenge due to the lack of sufficient clinical case reports. One promising avenue to overcome this problem is deep mutational scanning (DMS), a method of introducing and evaluating large-scale genetic variants in model cell lines. DMS allows unbiased investigation of variants, including those that are not found in clinical reports, thus improving rare disease diagnostics. Currently, the main obstacle limiting the full potential of DMS is the availability of functional assays that are specific to disease mechanisms. Thus, we explore high-throughput functional methodologies suitable to examine broad disease mechanisms. We specifically focus on methods that do not require robotics or automation but instead use well-designed molecular tools to transform biological mechanisms into easily detectable signals, such as cell survival rate, fluorescence or drug resistance. Here, we aim to bridge the gap between disease-relevant assays and their integration into the DMS framework.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan O. Gauthier
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Frances Cheung
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Tang X, Yan T, Wang S, Liu Q, Yang Q, Zhang Y, Li Y, Wu Y, Liu S, Ma Y, Yang L. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen Res 2024; 19:642-649. [PMID: 37721296 PMCID: PMC10581587 DOI: 10.4103/1673-5374.380904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 09/19/2023] Open
Abstract
β-Sitosterol is a type of phytosterol that occurs naturally in plants. Previous studies have shown that it has anti-oxidant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, and anti-tumor effects, but it is unknown whether β-sitosterol treatment reduces the effects of ischemic stroke. Here we found that, in a mouse model of ischemic stroke induced by middle cerebral artery occlusion, β-sitosterol reduced the volume of cerebral infarction and brain edema, reduced neuronal apoptosis in brain tissue, and alleviated neurological dysfunction; moreover, β-sitosterol increased the activity of oxygen- and glucose-deprived cerebral cortex neurons and reduced apoptosis. Further investigation showed that the neuroprotective effects of β-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke. In addition, β-sitosterol showed high affinity for NPC1L1, a key transporter of cholesterol, and antagonized its activity. In conclusion, β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yongqiang Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yumei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
4
|
Bednar C, Kübel S, Cordsmeier A, Scholz B, Menschikowski H, Ensser A. A Genetically Encoded Dark-to-Bright Biosensor for Visualisation of Granzyme-Mediated Cytotoxicity. Int J Mol Sci 2023; 24:13589. [PMID: 37686395 PMCID: PMC10487497 DOI: 10.3390/ijms241713589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Granzyme B (GZMB) is a key enzyme released by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells to induce apoptosis in target cells. We designed a novel fluorogenic biosensor which is able to assess GZMB activity in a specific and sensitive manner. This cleavage-responsive sensor for T cell activity level (CRSTAL) is based on a fluorescent protein that is only activated upon cleavage by GZMB or caspase-8. CRSTAL was tested in stable cell lines and demonstrated a strong and long-lasting fluorescence signal upon induction with GZMB. It can detect GZMB activity not only by overexpression of GZMB in target cells but also following transfer of GZMB and perforin from effector cells during cytotoxicity. This feature has significant implications for cancer immunotherapy, particularly in monitoring the efficacy of chimeric antigen receptor (CAR)-T cells. CAR-T cells are a promising therapy option for various cancer types, but monitoring their activity in vivo is challenging. The development of biosensors like CRSTAL provides a valuable tool for monitoring of CAR-T cell activity. In summary, CRSTAL is a highly sensitive biosensor that can detect GZMB activity in target cells, providing a means for evaluating the cytotoxic activity of immune cells and monitoring T cell activity in real time.
Collapse
Affiliation(s)
| | | | | | | | | | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.B.); (S.K.); (A.C.); (B.S.); (H.M.)
| |
Collapse
|
5
|
Feng M, Xu Z, Yin D, Zhao Z, Zhou X, Song L. Toxic effects of sodium dodecyl sulfate on planarian Dugesia japonica. PeerJ 2023; 11:e15660. [PMID: 37456884 PMCID: PMC10340106 DOI: 10.7717/peerj.15660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Sodium dodecyl sulfate (SDS) is an anionic surfactant, which is widely used in various fields in human life. However, SDS discharged into the water environment has a certain impact on aquatic organisms. In this study, planarian Dugesia japonica (D. japonica) was used to identify the toxic effects of SDS. A series of SDS solutions with different concentrations were used to treat planarians for the acute toxicity test , and the results showed that the semi-lethal concentration (LC50) of SDS to D. japonica at 24 h, 48 h, 72 h, and 96 h were 4.29 mg/L, 3.76 mg/L, 3.45 mg/L, and 3.20 mg/L respectively. After the planarians were exposed to 0.5 mg/L and 1.0 mg/L SDS solutions for 1, 3, and 5 days, the activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) content were measured to detect the oxidative stress and lipid peroxidation in planarians. Random amplified polymorphic DNA (RAPD) analysis was performed to detect the genotoxicity caused by SDS to planarians. The results showed that the activities of SOD, CAT, and MDA content increased after the treatment, indicating that SDS induced oxidative stress in planarians. RAPD analysis showed that the genomic template stability (GTS) values of planarians treated by 0.5 mg/L and 1.0 mg/L SDS for 1, 3, and 5 days were 67.86%, 64.29%, 58.93%, and 64.29%, 60.71%, 48.21%, respectively. GTS values decreased with the increasing of SDS concentration and exposure time, indicating that SDS had genotoxicity to planarians in a time and dose-related manner. Fluorescent quantitative PCR (qPCR) was used to investigate the effects of SDS on gene expression of planarians. After the planarians were exposed to 1.0 mg/L SDS solution for 1, 3, and 5 days, the expression of caspase3 was upregulated, and that of piwiA, piwiB, PCNA, cyclinB, and RAD51 were downregulated. These results suggested that SDS might induce apoptosis, affect cell proliferation, differentiation, and DNA repair ability of planarian cells and cause toxic effects on planarian D. japonica.
Collapse
Affiliation(s)
- Minmin Feng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zhenbiao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Dandan Yin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Zelong Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiuyuan Zhou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Linxia Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
6
|
Ren M, Li H, Fu Z, Li Q. Centenarian-Sourced Lactobacillus casei Combined with Dietary Fiber Complex Ameliorates Brain and Gut Function in Aged Mice. Nutrients 2022; 14:324. [PMID: 35057509 PMCID: PMC8781173 DOI: 10.3390/nu14020324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Dietary intervention could modulate age-related neurological disorders via the gut-brain axis. The potential roles of a probiotic and the dietary fiber complex (DFC) on brain and gut function in aged mice were investigated in this study. Lactobacillus casei LTL1361 and DFC were orally administrated for 12 weeks, and the learning and memory ability, as well as the oxidative parameters, inflammatory markers, gut barrier function and microbial metabolite short-chain fatty acids (SCFAs), were investigated. LTL1361 and DFC supplementation ameliorated cognitive ability, attenuated oxidative stress in brain and inflammation in serum and colon, ameliorated gut barrier function, and increased the SCFA concentrations and gene expression of SCFA receptors. The protective effect was more significantly enhanced in aged mice treated with the combination of LTL1361 and DFC than treated with LTL1361 or DFC alone. These results could be associated with the protected morphology of pyramidal nerve cells in hippocampus of mice brain and the downregulation of apoptosis marker caspase-3 in brain and upregulation of tight junction proteins in small intestine and colon. The results indicated that Lactobacillus casei LTL1361 and DFC alleviated age-related cognitive impairment, as well as protected brain and gut function. Lactobacillus casei LTL1361 and DFC might be used as novel and promising antiaging agents in human.
Collapse
Affiliation(s)
| | | | | | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (M.R.); (H.L.); (Z.F.)
| |
Collapse
|