1
|
Dong Y, Wang C, Ding X, Ma X, Huang R, Li M, Yang Q. The characterization of cell traction force on nonflat surfaces with different curvature by elastic hydrogel microspheres. Biotechnol Bioeng 2024; 121:3537-3550. [PMID: 38978386 DOI: 10.1002/bit.28802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
It is of great importance to study the detachment/attachment behaviors of cells (cancer cell, immune cell, and epithelial cell), as they are closely related with tumor metastasis, immunoreaction, and tissue development at variety scales. To characterize the detachment/attachment during the interaction between cells and substrate, some researchers proposed using cell traction force (CTF) as the indicator. To date, various strategies have been developed to measure the CTF. However, these methods only realize the measurements of cell passive forces on flat cases. To quantify the active CTF on nonflat surfaces, which can better mimic the in vivo case, we employed elastic hydrogel microspheres as a force sensor. The microspheres were fabricated by microfluidic chips with controllable size and mechanical properties to mimic substrate. Cells were cultured on microsphere and the CTF led to the deformation of microsphere. By detecting the morphology information, the CTF exerted by attached cells can be calculated by the in-house numerical code. Using these microspheres, the CTF of various cells (including tumor cell, immunological cell, and epithelium cell) were successfully obtained on nonflat surfaces with different curvature radii. The proposed method provides a versatile platform to measure the CTF with high precision and to understand the detachment/attachment behaviors during physiology processes.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xingquan Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
- School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an, P.R. China
| | - Rong Huang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Moxiao Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
- Nanjing Center for Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
2
|
Ding XJ, Cai XM, Wang QQ, Liu N, Zhong WL, Xi XN, Lu YX. Vitexicarpin suppresses malignant progression of colorectal cancer through affecting c-Myc ubiquitination by targeting IMPDH2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155833. [PMID: 39008915 DOI: 10.1016/j.phymed.2024.155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and is characterised by extensive invasive and metastatic potential. Previous studies have shown that vitexicarpin extracted from the fruits of Vitex rotundifolia can impede tumour progression. However, the molecular mechanisms involved in CRC treatment are still not fully established. PURPOSE Our study aimed to investigate the anticancer activity, targets, and molecular mechanisms of vitexicarpin in CRC hoping to provide novel therapies for patients with CRC. STUDY DESIGN/METHODS The impact of vitexicarpin on CRC was assessed through various experiments including MTT, clone formation, EDU, cell cycle, and apoptosis assays, as well as a tumour xenograft model. CETSA, label-free quantitative proteomics, and Biacore were used to identify the vitexicarpin targets. WB, Co-IP, Ubiquitination assay, IF, molecular docking, MST, and cell transfection were used to investigate the mechanism of action of vitexicarpin in CRC cells. Furthermore, we analysed the expression patterns and correlation of target proteins in TCGA and GEPIA datasets and clinical samples. Finally, wound healing, Transwell, tail vein injection model, and tissue section staining were used to demonstrate the antimetastatic effect of vitexicarpin on CRC in vitro and in vivo. RESULTS Our findings demonstrated that vitexicarpin exhibits anticancer activity by directly binding to inosine monophosphate dehydrogenase 2 (IMPDH2) and that it promotes c-Myc ubiquitination by disrupting the interaction between IMPDH2 and c-Myc, leading to epithelial-mesenchymal transition (EMT) inhibition. Vitexicarpin hinders the migration and invasion of CRC cells by reversing EMT both in vitro and in vivo. Additionally, these results were validated by the overexpression and knockdown of IMPDH2 in CRC cells. CONCLUSION These results demonstrated that vitexicarpin regulates the interaction between IMPDH2 and c-Myc to inhibit CRC proliferation and metastasis both in vitro and in vivo. These discoveries introduce potential molecular targets for CRC treatment and shed light on new mechanisms for c-Myc regulation in tumours.
Collapse
Affiliation(s)
- Xiao-Jing Ding
- College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xue-Mei Cai
- Huabei Petroleum Administration Bureau General Hospital, Renqiu 062550, PR China
| | - Qian-Qian Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China
| | - Wei-Long Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, PR China.
| | - Xiao-Nan Xi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China.
| | - Ya-Xin Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, PR China; College of Chemistry, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
3
|
Licciardello M, Traldi C, Cicolini M, Bertana V, Marasso SL, Cocuzza M, Tonda-Turo C, Ciardelli G. A miniaturized multicellular platform to mimic the 3D structure of the alveolar-capillary barrier. Front Bioeng Biotechnol 2024; 12:1346660. [PMID: 38646009 PMCID: PMC11026571 DOI: 10.3389/fbioe.2024.1346660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Several diseases affect the alveoli, and the efficacy of medical treatments and pharmaceutical therapies is hampered by the lack of pre-clinical models able to recreate in vitro the diseases. Microfluidic devices, mimicking the key structural and compositional features of the alveoli, offer several advantages to medium and high-throughput analysis of new candidate therapies. Here, we developed an alveolus-on-a-chip recapitulating the microanatomy of the physiological tissue by including the epithelium, the fibrous interstitial layer and the capillary endothelium. A PDMS device was obtained assembling a top layer and a bottom layer obtained by replica molding. A polycaprolactone/gelatin (PCL-Gel) electrospun membrane was included within the two layers supporting the seeding of 3 cell phenotypes. Epithelial cells were grown on a fibroblast-laden collagen hydrogel located on the top side of the PCL-Gel mats while endothelial cells were seeded on the basolateral side of the membrane. The innovative design of the microfluidic device allows to replicate both cell-cell and cell-extracellular matrix interactions according to the in vivo cell arrangement along with the establishment of physiologically relevant air-liquid interface conditions. Indeed, high cell viability was confirmed for up to 10 days and the formation of a tight endothelial and epithelial barrier was assessed by immunofluorescence assays.
Collapse
Affiliation(s)
- Michela Licciardello
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Cecilia Traldi
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Martina Cicolini
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Valentina Bertana
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Simone Luigi Marasso
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
- CNR-IMEM, National Research Council-Institute of Materials for Electronics and Magnetism, Parma, Italy
| | - Matteo Cocuzza
- ChiLab- Materials and Microsystems Laboratory, Politecnico di Torino, Department of Applied Science and Technology (DISAT), Chivasso, Italy
| | - Chiara Tonda-Turo
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Gianluca Ciardelli
- La.Di.Spe Bioengineerig, Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Turin, Italy
- PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
- CNR-IPCF, National Research Council-Institute for Chemical and Physical Processes, Pisa, Italy
| |
Collapse
|
4
|
Wu W, Peng Y, Xu M, Yan T, Zhang D, Chen Y, Mei K, Chen Q, Wang X, Qiao Z, Wang C, Wu S, Zhang Q. Deep-Learning-Based Nanomechanical Vibration for Rapid and Label-Free Assay of Epithelial Mesenchymal Transition. ACS NANO 2024; 18:3480-3496. [PMID: 38169507 DOI: 10.1021/acsnano.3c10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer is a profound danger to our life and health. The classification and related studies of epithelial and mesenchymal phenotypes of cancer cells are key scientific questions in cancer research. Here, we investigated cancer cell colonies from a mechanical perspective and developed an assay for classifying epithelial/mesenchymal cancer cell colonies using the biomechanical fingerprint in the form of "nanovibration" in combination with deep learning. The classification method requires only 1 s of vibration data and has a classification accuracy of nearly 92.5%. The method has also been validated for the screening of anticancer drugs. Compared with traditional methods, the method has the advantages of being nondestructive, label-free, and highly sensitive. Furthermore, we proposed a perspective that subcellular structure influences the amplitude and spectrum of nanovibrations and demonstrated it using experiments and numerical simulation. These findings allow internal changes in the cell colony to be manifested by nanovibrations. This work provides a perspective and an ancillary method for cancer cell phenotype diagnosis and promotes the study of biomechanical mechanisms of cancer progression.
Collapse
Affiliation(s)
- Wenjie Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Mengjun Xu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Tianhao Yan
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Ye Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Kainan Mei
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qiubo Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Xiapeng Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Chen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
5
|
Rodrigues DB, Reis RL, Pirraco RP. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool. J Biomed Sci 2024; 31:13. [PMID: 38254117 PMCID: PMC10804490 DOI: 10.1186/s12929-024-00997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer remains a serious burden in society and while the pace in the development of novel and more effective therapeutics is increasing, testing platforms that faithfully mimic the tumor microenvironment are lacking. With a clear shift from animal models to more complex in vitro 3D systems, spheroids emerge as strong options in this regard. Years of development have allowed spheroid-based models to better reproduce the biomechanical cues that are observed in the tumor-associated extracellular matrix (ECM) and cellular interactions that occur in both a cell-cell and cell-ECM manner. Here, we summarize some of the key cellular interactions that drive tumor development, progression and invasion, and how successfully are these interactions recapitulated in 3D spheroid models currently in use in the field. We finish by speculating on future advancements in the field and on how these can shape the relevance of spherical 3D models for tumor modelling.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, Braga, 4805-017, Guimarães, Portugal.
| |
Collapse
|
6
|
Ebrahimnezhad M, Natami M, Bakhtiari GH, Tabnak P, Ebrahimnezhad N, Yousefi B, Majidinia M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed Pharmacother 2023; 169:115900. [PMID: 37981461 DOI: 10.1016/j.biopha.2023.115900] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Nowadays, lung cancer is the most common cause of cancer-related deaths in both men and women globally. Despite the development of extremely efficient targeted agents, lung cancer progression and drug resistance remain serious clinical issues. Increasing knowledge of the molecular mechanisms underlying progression and drug resistance will enable the development of novel therapeutic methods. It has been revealed that transcription factors (TF) dysregulation, which results in considerable expression modifications of genes, is a generally prevalent phenomenon regarding human malignancies. The forkhead box O1 (FOXO1), a member of the forkhead transcription factor family with crucial roles in cell fate decisions, is suggested to play a pivotal role as a tumor suppressor in a variety of malignancies, especially in lung cancer. FOXO1 is involved in diverse cellular processes and also has clinical significance consisting of cell cycle arrest, apoptosis, DNA repair, oxidative stress, cancer prevention, treatment, and chemo/radioresistance. Based on the critical role of FOXO1, this transcription factor appears to be an appropriate target for future drug discovery in lung cancers. This review focused on the signaling pathways, and molecular mechanisms involved in FOXO1 regulation in lung cancer. We also discuss pharmacological compounds that are currently being administered for lung cancer treatment by affecting FOXO1 and also point out the essential role of FOXO1 in drug resistance. Future preclinical research should assess combination drug strategies to stimulate FOXO1 and its upstream regulators as potential strategies to treat resistant or advanced lung cancers.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Natami
- Department of Urology,Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhad
- Department of Microbiology, Faculty of Basic Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Li Z, Huang N, Du Q, Huang W, Wang B, Wang B, Shen G, Zhang H, Shi S, Wang L. Role of immunophenotypic characterisation in prognostic subtyping of intrahepatic cholangiocarcinoma. Pathology 2023; 55:979-988. [PMID: 37858435 DOI: 10.1016/j.pathol.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/07/2023] [Accepted: 07/23/2023] [Indexed: 10/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is classified by the 5th WHO classification of tumours of the digestive system as large duct type (LDT) and small duct type (SDT), based on the anatomical location, morphological appearances, immunophenotype, and gene events. We evaluated the subtyping system using real-world data and established a supplementary method using immunohistochemical (IHC) detection. We retrospectively investigated 190 cases of surgically resected iCCA and classified them according to histological evaluations and gene detection. The prognostic value of the IHC markers were evaluated according to the relapse-free survival (RFS) and overall survival (OS). Basic histological classification was insufficient, with 61 cases classified as uncertain. This method showed no prognostic value for RFS or OS. The four-marker IHC detection, including EMA, S100P, N-cadherin, and CRP, which classified 68 cases as LDT, 108 cases as SDT, and 14 cases as uncertain, was highly efficient in subtyping and prognosis. The seven-marker method, including CD56, MUC5AC and MUC6, was consistent with the four-marker method. FGFR2 gene fusion was exclusively detected in 20 cases of SDT iCCA, according to the four- and seven-marker IHC detection. This novel method of iCCA classification exhibited diagnostic, prognostic and therapeutic value in clinical practice.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Du
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Huang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingning Wang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guihua Shen
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haifeng Zhang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
9
|
Ho HY, Lin CC, Lo YS, Chuang YC, Abomughaid MM, Hsieh MJ. Picrasidine J, a Dimeric β-Carboline-Type Alkaloid from Picrasma quassioides, Inhibits Metastasis of Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13230. [PMID: 37686036 PMCID: PMC10487624 DOI: 10.3390/ijms241713230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) are associated with recurrence, distant metastasis, and poor overall survival. This highlights the need for identifying potential therapeutics with minimal side-effects. The present study was designed to investigate the anticancer effects of picrasidine J, a dimeric β-carboline-type alkaloid isolated from the southern Asian plant Picrasma quassioides. The results showed that picrasidine J significantly inhibits HNSCC cell motility, migration, and invasion. Specifically, picrasidine J inhibited the EMT process by upregulating E-cadherin and ZO-1 and downregulating beta-catenin and Snail. Moreover, picrasidine J reduced the expression of the serine protease KLK-10. At the signaling level, the compound reduced the phosphorylation of ERK. All these factors collectively facilitated the inhibition of HNSCC metastasis with picrasidine J. Taken together, the study identifies picrasidine J as a potential anticancer compound of plant origin that might be used clinically to prevent the distant metastasis and progression of HNSCC.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (C.-C.L.); (Y.-S.L.); (Y.-C.C.)
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (C.-C.L.); (Y.-S.L.); (Y.-C.C.)
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (C.-C.L.); (Y.-S.L.); (Y.-C.C.)
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (C.-C.L.); (Y.-S.L.); (Y.-C.C.)
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (H.-Y.H.); (C.-C.L.); (Y.-S.L.); (Y.-C.C.)
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
10
|
Zhao G, Ren Y, Yan J, Zhang T, Lu P, Lei J, Rao H, Kang X, Cao Z, Peng F, Peng C, Rao C, Li Y. Neoprzewaquinone A Inhibits Breast Cancer Cell Migration and Promotes Smooth Muscle Relaxation by Targeting PIM1 to Block ROCK2/STAT3 Pathway. Int J Mol Sci 2023; 24:ijms24065464. [PMID: 36982538 PMCID: PMC10051292 DOI: 10.3390/ijms24065464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Salvia miltiorrhiza Bunge (Danshen) has been widely used to treat cancer and cardiovascular diseases in Chinese traditional medicine. Here, we found that Neoprzewaquinone A (NEO), an active component of S. miltiorrhiza, selectively inhibits PIM1. We showed that NEO potently inhibits PIM1 kinase at nanomolar concentrations and significantly suppresses the growth, migration, and Epithelial-Mesenchymal Transition (EMT) in the triple-negative breast cancer cell line, MDA-MB-231 in vitro. Molecular docking simulations revealed that NEO enters the PIM1 pocket, thereby triggering multiple interaction effects. Western blot analysis revealed that both NEO and SGI-1776 (a specific PIM1 inhibitor), inhibited ROCK2/STAT3 signaling in MDA-MB-231 cells, indicating that PIM1 kinase modulates cell migration and EMT via ROCK2 signaling. Recent studies indicated that ROCK2 plays a key role in smooth muscle contraction, and that ROCK2 inhibitors effectively control the symptoms of high intraocular pressure (IOP) in glaucoma patients. Here, we showed that NEO and SGI-1776 significantly reduce IOP in normal rabbits and relax pre-restrained thoracic aortic rings in rats. Taken together, our findings indicated that NEO inhibits TNBC cell migration and relaxes smooth muscles mainly by targeting PIM1 and inhibiting ROCK2/STAT3 signaling, and that PIM1 may be an effective target for IOP and other circulatory diseases.
Collapse
Affiliation(s)
- Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaolong Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| |
Collapse
|
11
|
Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol (Dordr) 2022; 45:1119-1136. [PMID: 36149601 DOI: 10.1007/s13402-022-00720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metastasis refers to the spread of cancer cells from a primary tumor to other parts of the body via the lymphatic system and bloodstream. With tremendous effort over the past decades, remarkable progress has been made in understanding the molecular and cellular basis of metastatic processes. Metastasis occurs through five steps, including infiltration and migration, intravasation, survival, extravasation, and colonization. Various molecular and cellular factors involved in the metastatic process have been identified, such as epigenetic factors of the extracellular matrix (ECM), cell-cell interactions, soluble signaling, adhesion molecules, and mechanical stimuli. However, the underlying cause of cancer metastasis has not been elucidated. CONCLUSION In this review, we have focused on changes in the mechanical properties of cancer cells and their surrounding environment to understand the causes of cancer metastasis. Cancer cells have unique mechanical properties that distinguish them from healthy cells. ECM stiffness is involved in cancer cell growth, particularly in promoting the epithelial-mesenchymal transition (EMT). During tumorigenesis, the mechanical properties of cancer cells change in the direction opposite to their environment, resulting in a mechanical stress imbalance between the intracellular and extracellular domains. Disruption of mechanical homeostasis may be one of the causes of EMT that triggers the metastasis of cancer cells.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
12
|
Wang R, Qin Z, Luo H, Pan M, Liu M, Yang P, Shi T. Prognostic value of PNN in prostate cancer and its correlation with therapeutic significance. Front Genet 2022; 13:1056224. [PMID: 36468018 PMCID: PMC9708726 DOI: 10.3389/fgene.2022.1056224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 10/11/2023] Open
Abstract
Prostate cancer (PCa) is the most common malignancy. New biomarkers are in demand to facilitate the management. The role of the pinin protein (encoded by PNN gene) in PCa has not been thoroughly explored yet. Using The Cancer Genome Atlas (TCGA-PCa) dataset validated with Gene Expression Omnibus (GEO) and protein expression data retrieved from the Human Protein Atlas, the prognostic and diagnostic values of PNN were studied. Highly co-expressed genes with PNN (HCEG) were constructed for pathway enrichment analysis and drug prediction. A prognostic signature based on methylation status using HCEG was constructed. Gene set enrichment analysis (GSEA) and the TISIDB database were utilised to analyse the associations between PNN and tumour-infiltrating immune cells. The upregulated PNN expression in PCa at both transcription and protein levels suggests its potential as an independent prognostic factor of PCa. Analyses of the PNN's co-expression network indicated that PNN plays a role in RNA splicing and spliceosomes. The prognostic methylation signature demonstrated good performance for progression-free survival. Finally, our results showed that the PNN gene was involved in splicing-related pathways in PCa and identified as a potential biomarker for PCa.
Collapse
Affiliation(s)
- Ruisong Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
| | - Ziyi Qin
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Huiling Luo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Meisen Pan
- Affiliated Hospital of Hunan University of Arts and Science (the Maternal and Child Health Hospital), Changde, Hunan, China
- Medical College, Hunan University of Arts and Science, Changde, Hunan, China
| | - Mingyao Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
- Hunan Provincial Ley Laboratory for Molecular Immunity Techonology of Aquatic Animal Diseases, Changde, China
| | - Tieliu Shi
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, China
| |
Collapse
|
13
|
Wu H, Zhu N, Liu J, Ma J, Jiao R. Shaggy regulates tissue growth through Hippo pathway in Drosophila. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2131-2144. [PMID: 36057002 DOI: 10.1007/s11427-022-2156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The evolutionarily conserved Hippo pathway coordinates cell proliferation, differentiation and apoptosis to regulate organ growth and tumorigenesis. Hippo signaling activity is tightly controlled by various upstream signals including growth factors and cell polarity, but the full extent to which the pathway is regulated during development remains to be resolved. Here, we report the identification of Shaggy, the homolog of mammalian Gsk3β, as a novel regulator of the Hippo pathway in Drosophila. Our results show that Shaggy promotes the expression of Hippo target genes in a manner that is dependent on its kinase activity. Loss of Shaggy leads to Yorkie inhibition and downregulation of Hippo pathway target genes. Mechanistically, Shaggy acts upstream of the Hippo pathway and negatively regulates the abundance of the FERM domain containing adaptor protein Expanded. Our results reveal that Shaggy is functionally required for Crumbs/Slmb-mediated downregulation of Expanded in vivo, providing a potential molecular link between cellular architecture and the Hippo signaling pathway.
Collapse
Affiliation(s)
- Honggang Wu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Nannan Zhu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jun Ma
- Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
14
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|