1
|
Maier A, Tsuchiya N. Growing evidence for separate neural mechanisms for attention and consciousness. Atten Percept Psychophys 2021; 83:558-576. [PMID: 33034851 PMCID: PMC7886945 DOI: 10.3758/s13414-020-02146-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
Our conscious experience of the world seems to go in lockstep with our attentional focus: We tend to see, hear, taste, and feel what we attend to, and vice versa. This tight coupling between attention and consciousness has given rise to the idea that these two phenomena are indivisible. In the late 1950s, the honoree of this special issue, Charles Eriksen, was among a small group of early pioneers that sought to investigate whether a transient increase in overall level of attention (alertness) in response to a noxious stimulus can be decoupled from conscious perception using experimental techniques. Recent years saw a similar debate regarding whether attention and consciousness are two dissociable processes. Initial evidence that attention and consciousness are two separate processes primarily rested on behavioral data. However, the past couple of years witnessed an explosion of studies aimed at testing this conjecture using neuroscientific techniques. Here we provide an overview of these and related empirical studies on the distinction between the neuronal correlates of attention and consciousness, and detail how advancements in theory and technology can bring about a more detailed understanding of the two. We argue that the most promising approach will combine ever-evolving neurophysiological and interventionist tools with quantitative, empirically testable theories of consciousness that are grounded in a mathematically formalized understanding of phenomenology.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Naotsugu Tsuchiya
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, VIC, Australia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, 565-0871, Japan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan
| |
Collapse
|
2
|
Davidson MJ, Mithen W, Hogendoorn H, van Boxtel JJA, Tsuchiya N. The SSVEP tracks attention, not consciousness, during perceptual filling-in. eLife 2020; 9:e60031. [PMID: 33170121 PMCID: PMC7682990 DOI: 10.7554/elife.60031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Research on the neural basis of conscious perception has almost exclusively shown that becoming aware of a stimulus leads to increased neural responses. By designing a novel form of perceptual filling-in (PFI) overlaid with a dynamic texture display, we frequency-tagged multiple disappearing targets as well as their surroundings. We show that in a PFI paradigm, the disappearance of a stimulus and subjective invisibility is associated with increases in neural activity, as measured with steady-state visually evoked potentials (SSVEPs), in electroencephalography (EEG). We also find that this increase correlates with alpha-band activity, a well-established neural measure of attention. These findings cast doubt on the direct relationship previously reported between the strength of neural activity and conscious perception, at least when measured with current tools, such as the SSVEP. Instead, we conclude that SSVEP strength more closely measures changes in attention.
Collapse
Affiliation(s)
- Matthew J Davidson
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Department of Experimental Psychology, Faculty of Medicine, University of OxfordOxfordUnited Kingdom
| | - Will Mithen
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, University of MelbourneMelbourneAustralia
| | - Jeroen JA van Boxtel
- Discipline of Psychology, Faculty of Health, University of CanberraCanberraAustralia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Science, Monash UniversityMelbourneAustralia
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)SuitaJapan
- Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gunKyotoJapan
| |
Collapse
|
3
|
Thomas V, Davidson M, Zakavi P, Tsuchiya N, van Boxtel J. Simulated forward and backward self motion, based on realistic parameters, causes motion induced blindness. Sci Rep 2017; 7:9767. [PMID: 28851914 PMCID: PMC5574926 DOI: 10.1038/s41598-017-09424-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Motion Induced Blindness (MIB) is a well-established visual phenomenon whereby highly salient targets disappear when viewed against a moving background mask. No research has yet explored whether contracting and expanding optic flow can also trigger target disappearance. We explored MIB using mask speeds corresponding to driving at 35, 50, 65 and 80 km/h in simulated forward (expansion) and backward (contraction) motion as well as 2-D radial movement, random, and static mask motion types. Participants (n = 18) viewed MIB targets against masks with different movement types, speed, and target locations. To understand the relationship between saccades, pupil response and perceptual disappearance, we ran two additional eye-tracking experiments (n = 19). Target disappearance increased significantly with faster mask speeds and upper visual field target presentation. Simulated optic flow and 2-D radial movement caused comparable disappearance, and all moving masks caused significantly more disappearance than a static mask. Saccades could not entirely account for differences between conditions, suggesting that self-motion optic flow does cause MIB in an artificial setting. Pupil analyses implied that MIB disappearance induced by optic flow is not subjectively salient, potentially explaining why MIB is not noticed during driving. Potential implications of MIB for driving safety and Head-Up-Display (HUD) technologies are discussed.
Collapse
Affiliation(s)
- Victoria Thomas
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia.
| | - Matthew Davidson
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia
| | - Parisa Zakavi
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Naotsugu Tsuchiya
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia
| | - Jeroen van Boxtel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
4
|
Devyatko D, Appelbaum LG, Mitroff SR. A Common Mechanism for Perceptual Reversals in Motion-Induced Blindness, the Troxler Effect, and Perceptual Filling-In. Perception 2016; 46:50-77. [PMID: 27697914 DOI: 10.1177/0301006616672577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several striking visual phenomena involve a physically present stimulus that alternates between being perceived and being "invisible." For example, motion-induced blindness, the Troxler effect, and perceptual filling-in all consist of subjective alternations where an item repeatedly changes from being seen to unseen. In the present study, we explored whether these three specific visual phenomena share any commonalities in their alternation rates and patterns to better understand the mechanisms of each. Data from 69 individuals revealed moderate to strong correlations across the three phenomena for the number of perceptual disappearances and the accumulated duration of the disappearances. Importantly, these effects were not correlated with eye movement patterns (saccades) assessed through eye tracking, differences in motion sensitivity as indexed by dot coherence and speed perception thresholds, or simple reaction time abilities. Principal component analyses revealed a single component that explained 67% of the variance for the number of perceptual reversals and 60% for the accumulated duration of the disappearances. The temporal dynamics of illusory disappearances was also compared for each phenomenon, and normalized durations of disappearances were well fit by a gamma distribution with similar shape parameters for each phenomenon, suggesting that they may be driven by a single oscillatory mechanism.
Collapse
Affiliation(s)
- Dina Devyatko
- National Research University Higher School of Economics, Moscow, Russia; Institute of Information Processing and Decision Making, University of Haifa, Israel
| | - L Gregory Appelbaum
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Stephen R Mitroff
- Department of Psychology, The George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Händel BF, Jensen O. Spontaneous local alpha oscillations predict motion-induced blindness. Eur J Neurosci 2014; 40:3371-9. [PMID: 25174681 DOI: 10.1111/ejn.12701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/29/2014] [Indexed: 11/27/2022]
Abstract
Bistable visual illusions are well suited for exploring the neuronal states of the brain underlying changes in perception. In this study, we investigated oscillatory activity associated with 'motion-induced blindness' (MIB), which denotes the perceptual disappearance of salient target stimuli when a moving pattern is superimposed on them (Bonneh et al., ). We applied an MIB paradigm in which illusory target disappearances would occur independently in the left and right hemifields. Both illusory and real target disappearance were followed by an alpha lateralization with weaker contralateral than ipsilateral alpha activity (~10 Hz). However, only the illusion showed early alpha lateralization in the opposite direction, which preceded the alpha effect present for both conditions and coincided with the estimated onset of the illusion. The duration of the illusory disappearance was further predicted by the magnitude of this early lateralization when considered over subjects. In the gamma band (60-80 Hz), we found an increase in activity contralateral relative to ipsilateral only after a real disappearance. Whereas early alpha activity was predictive of onset and length of the illusory percept, gamma activity showed no modulation in relation to the illusion. Our study demonstrates that the spontaneous changes in visual alpha activity have perceptual consequences.
Collapse
Affiliation(s)
- Barbara F Händel
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525EN, Nijmegen, The Netherlands; Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany; Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
6
|
Rosenthal O, Davies M, Aimola Davies AM, Humphreys GW. A role of 3-D surface-from-motion cues in motion-induced blindness. Perception 2013; 42:1353-61. [PMID: 24649637 DOI: 10.1068/p7560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Motion-induced blindness (MIB), the illusory disappearance of local targets against a moving mask, has been attributed to both low-level stimulus-based effects and high-level processes, involving selection between local and more global stimulus contexts. Prior work shows that MIB is modulated by binocular disparity-based depth-ordering cues. We assessed whether the depth effect is specific to disparity by studying how monocular 3-D surface from motion affects MIB. Monocular kinetic depth cues were used to create a global 3-D hourglass with concave and convex surfaces. MIB increased for stationary targets on the convex relative to the concave area, extending the role of 3-D cues. Interestingly, this convexity effect was limited to the left visual field--replicating spatial anisotropies in MIB. The data indicate a causal role of general 3-D surface coding in MIB, consistent with MIB being affected by high-level, visual representations.
Collapse
|
7
|
Combined effects of perceptual grouping cues on object representation: Evidence from motion-induced blindness. Atten Percept Psychophys 2010; 72:387-97. [DOI: 10.3758/app.72.2.387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Abstract
In motion-induced blindness (MIB), salient objects in full view can repeatedly fluctuate into and out of conscious awareness when superimposed onto certain global moving patterns. Here we suggest a new account of this striking phenomenon: Rather than being a failure of visual processing, MIB may be a functional product of the visual system's attempt to separate distal stimuli from artifacts of damage to the visual system itself. When a small object is invariant despite changes that are occurring to a global region of the surrounding visual field, the visual system may discount that stimulus as akin to a scotoma, and may thus expunge it from awareness. We describe three experiments demonstrating new phenomena predicted by this account and discuss how it can also explain several previous results.
Collapse
|