1
|
Gantait A, Masih SA, Addesso R, Maxton A, Sofo A. Glucosinolates Mediated Regulation of Enzymatic Activity in Response to Oxidative Stress in Brassica spp. PLANTS (BASEL, SWITZERLAND) 2024; 13:3422. [PMID: 39683215 DOI: 10.3390/plants13233422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Brassica crops are vital as they supply essential minerals, antioxidants, and bioactive substances like anthocyanins, glucosinolates, and carotenoids. However, biotic and abiotic elements that cause oxidative stress through heavy metals and other eco-toxicants pose a risk to Brassica plants. Increased generation of Reactive Oxygen Species (ROS) causes oxidative stress, which damages biomolecules and interferes with plant growth, productivity, and cellular equilibrium. Plants producing Brassica need an intricate enzyme defence mechanism to fend off oxidative stress. All the enzymes that have been addressed are found in mitochondria, peroxisomes, chloroplasts, and other cell components. They are in charge of removing ROS and preserving the cell's redox balance. Additionally, Brassica plants use secondary metabolites called Glucosinolates (GLs), which have the capacity to regulate enzymatic activity and act as antioxidants. By breaking down compounds like sulforaphane, GLs boost antioxidant enzymes and provide protection against oxidative stress. To develop methods for improving agricultural crop stress tolerance and productivity in Brassica, it is necessary to comprehend the dynamic interaction between GL metabolism and enzymatic antioxidant systems. This highlights the possibility of maximizing antioxidant defences and raising the nutritional and commercial value of Brassica across the globe by utilizing genetic diversity and environmental interactions.
Collapse
Affiliation(s)
- Aishmita Gantait
- Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Sam A Masih
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Rosangela Addesso
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ann Maxton
- Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Adriano Sofo
- Department of Agricultural, Forestry, Food and Environmental Sciences (DAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
2
|
Luo Y, Zhang Y, Xiong Z, Chen X, Sha A, Xiao W, Peng L, Zou L, Han J, Li Q. Peptides Used for Heavy Metal Remediation: A Promising Approach. Int J Mol Sci 2024; 25:6717. [PMID: 38928423 PMCID: PMC11203628 DOI: 10.3390/ijms25126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, heavy metal pollution has become increasingly prominent, severely damaging ecosystems and biodiversity, and posing a serious threat to human health. However, the results of current methods for heavy metal restoration are not satisfactory, so it is urgent to find a new and effective method. Peptides are the units that make up proteins, with small molecular weights and strong biological activities. They can effectively repair proteins by forming complexes, reducing heavy metal ions, activating the plant's antioxidant defense system, and promoting the growth and metabolism of microorganisms. Peptides show great potential for the remediation of heavy metal contamination due to their special structure and properties. This paper reviews the research progress in recent years on the use of peptides to remediate heavy metal pollution, describes the mechanisms and applications of remediation, and provides references for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jialiang Han
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610000, China; (Y.L.); (Y.Z.); (Z.X.); (X.C.); (A.S.); (W.X.); (L.P.); (L.Z.)
| |
Collapse
|
3
|
Mo L, Fang L, Yao W, Nie J, Dai J, Liang Y, Qin L. LC-QTOF/MS-based non-targeted metabolomics to explore the toxic effects of di(2-ethylhexyl) phthalate (DEHP) on Brassica chinensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170817. [PMID: 38340818 DOI: 10.1016/j.scitotenv.2024.170817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known to pose health risks to humans upon exposure. Recognizing the toxic nature of DEHP, our study aimed to elucidate the response mechanisms in Brassica chinensis L. (Shanghai Qing) when subjected to varying concentrations of DEHP (2 mg kg-1, 20 mg kg-1, and 50 mg kg-1), particularly under tissue stress. The findings underscored the substantial impact of DEHP treatment on the growth of Brassica chinensis L., with increased DEHP concentration leading to a notable decrease in chlorophyll levels and alterations in the content of antioxidant enzyme activities, particularly superoxide dismutase (SOD) and peroxidase (POD). Moreover, elevated DEHP concentrations correlated with increased malondialdehyde (MDA) levels. Our analysis detected a total of 507 metabolites in Brassica chinensis L., with 331 in shoots and 176 in roots, following DEHP exposure. There was a significant difference in the number of metabolites in shoots and roots, with 79 and 64 identified, respectively (VIP > 1, p < 0.05). Metabolic pathway enrichment in Brassica chinensis L. shoots revealed significant perturbations in valine, leucine, and isoleucine biosynthesis and degradation, aminoacyl-tRNA, and glucosinolate biosynthesis. In the roots of Brassica chinensis L., varying DEHP levels exerted a substantial impact on the biosynthesis of zeatin, ubiquinone terpenoids, propane, piperidine, and pyridine alkaloids, as well as glutathione metabolic pathways. Notably, DEHP's influence was more pronounced in the roots than in the shoots, with higher DEHP concentrations affecting a greater number of metabolic pathways. This experimental study provides valuable insights into the molecular mechanisms underlying DEHP-induced stress in Brassica chinensis L., with potential implications for human health and food safety.
Collapse
Affiliation(s)
- Lingyun Mo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China.
| | - Liusen Fang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Weihao Yao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Jinfang Nie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Junfeng Dai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - YanPeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
4
|
Pishchik V, Mirskaya G, Chizhevskaya E, Chebotar V, Chakrabarty D. Nickel stress-tolerance in plant-bacterial associations. PeerJ 2021; 9:e12230. [PMID: 34703670 PMCID: PMC8487243 DOI: 10.7717/peerj.12230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Nickel (Ni) is an essential element for plant growth and is a constituent of several metalloenzymes, such as urease, Ni-Fe hydrogenase, Ni-superoxide dismutase. However, in high concentrations, Ni is toxic and hazardous to plants, humans and animals. High levels of Ni inhibit plant germination, reduce chlorophyll content, and cause osmotic imbalance and oxidative stress. Sustainable plant-bacterial native associations are formed under Ni-stress, such as Ni hyperaccumulator plants and rhizobacteria showed tolerance to high levels of Ni. Both partners (plants and bacteria) are capable to reduce the Ni toxicity and developed different mechanisms and strategies which they manifest in plant-bacterial associations. In addition to physical barriers, such as plants cell walls, thick cuticles and trichomes, which reduce the elevated levels of Ni entrance, plants are mitigating the Ni toxicity using their own antioxidant defense mechanisms including enzymes and other antioxidants. Bacteria in its turn effectively protect plants from Ni stress and can be used in phytoremediation. PGPR (plant growth promotion rhizobacteria) possess various mechanisms of biological protection of plants at both whole population and single cell levels. In this review, we highlighted the current understanding of the bacterial induced protective mechanisms in plant-bacterial associations under Ni stress.
Collapse
Affiliation(s)
- Veronika Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Galina Mirskaya
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Elena Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | - Vladimir Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | | |
Collapse
|
5
|
A Review on Practical Application and Potentials of Phytohormone-Producing Plant Growth-Promoting Rhizobacteria for Inducing Heavy Metal Tolerance in Crops. SUSTAINABILITY 2020. [DOI: 10.3390/su12219056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Water scarcity and high input costs have compelled farmers to use untreated wastewater and industrial effluents to increase profitability of their farms. Normally, these effluents improve crop productivity by serving as carbon source for microbes, providing nutrients to plants and microbes, and improving soil physicochemical and biological properties. They, however, may also contain significant concentrations of potential heavy metals, the main inorganic pollutants affecting plant systems, in addition to soil deterioration. The continuous use of untreated industrial wastes and agrochemicals may lead to accumulation of phytotoxic concentration of heavy metals in soils. Phytotoxic concentration of heavy metals in soils has been reported in Pakistan along the road sides and around metropolitan areas, which may cause its higher accumulation in edible plant parts. A number of bacterial that can induce heavy metal tolerance in plants due to their ability to produce phytohormones strains have been reported. Inoculation of crop plants with these microbes can help to improve their growth and productivity under normal, as well as stressed, conditions. This review reports the recent developments in heavy metal pollution as one of the major inorganic sources, the response of plants to these contaminants, and heavy metal stress mitigation strategies. We have also summarized the exogenous application of phytohormones and, more importantly, the use of phytohormone-producing, heavy metal-tolerant rhizobacteria as one of the recent tools to deal with heavy metal contamination and improvement in productivity of agricultural systems.
Collapse
|
6
|
Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. ScientificWorldJournal 2015; 2015:756120. [PMID: 25688377 PMCID: PMC4321847 DOI: 10.1155/2015/756120] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Center of Modern Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yulong Ding
- Center of Modern Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Mokhberdoran
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Islamic Azad University, Mashhad Branch, Mashhad 9187147578, Iran
| | - Yinfeng Xie
- Center of Modern Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|