1
|
The Asian Summer Monsoon: Teleconnections and Forcing Mechanisms—A Review from Chinese Speleothem δ18O Records. QUATERNARY 2019. [DOI: 10.3390/quat2030026] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asian summer monsoon (ASM) variability significantly affects hydro-climate, and thus socio-economics, in the East Asian region, where nearly one-third of the global population resides. Over the last two decades, speleothem δ18O records from China have been utilized to reconstruct ASM variability and its underlying forcing mechanisms on orbital to seasonal timescales. Here, we use the Speleothem Isotopes Synthesis and Analysis database (SISAL_v1) to present an overview of hydro-climate variability related to the ASM during three periods: the late Pleistocene, the Holocene, and the last two millennia. We highlight the possible global teleconnections and forcing mechanisms of the ASM on different timescales. The longest composite stalagmite δ18O record over the past 640 kyr BP from the region demonstrates that ASM variability on orbital timescales is dominated by the 23 kyr precessional cycles, which are in phase with Northern Hemisphere summer insolation (NHSI). During the last glacial, millennial changes in the intensity of the ASM appear to be controlled by North Atlantic climate and oceanic feedbacks. During the Holocene, changes in ASM intensity were primarily controlled by NHSI. However, the spatio-temporal distribution of monsoon rain belts may vary with changes in ASM intensity on decadal to millennial timescales.
Collapse
|
2
|
Simulation of Marine Weather during an Extreme Rainfall Event: A Case Study of a Tropical Cyclone. HYDROLOGY 2019. [DOI: 10.3390/hydrology6020042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ocean is the largest source of water vapor on the planet, while precipitation is the greatest in tropical oceans and coastal areas. As a strong convective weather, typhoons bring not only strong winds but also strong precipitations. The accurate prediction of rainfall and precipitation induced by typhoons is still difficult because of the nonlinear relationship between typhoon precipitation and physical processes such as typhoon dynamics, heat, cloud microphysics, and radiation. In order to fully describe the interaction between sea and air, we simulated rainfall distribution under the influence of a typhoon using a state-of-the-art, atmosphere–ocean-wave model considering a real typhoon over the South China Sea as a case study. The typhoon wind field, pressure field, and spatial and temporal distribution of rainfall were simulated on the basis of this coupled atmosphere–ocean-wave model. The spatial asymmetry distribution characteristics of typhoon wind field, pressure field, and rainfall were revealed by the simulation. The reasons for this asymmetric distribution were elaborated through a diagnostic analysis.
Collapse
|
3
|
Speleothem Mg, Sr and Ba records during the MIS 5c-d, and implications for paleoclimate change in NE Sichuan, Central China. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4681-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Orbital- and millennial-scale variability of the Asian monsoon during MIS8 from Sanbao Cave at Mount Shennongjia, central China. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0542-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|