Li T, Zhang Y, Du C, Yang D, Song MP, Niu JL. Simultaneous construction of inherent and axial chirality by cobalt-catalyzed enantioselective C-H activation of calix[4]arenes.
Nat Commun 2024;
15:7673. [PMID:
39242562 PMCID:
PMC11379863 DOI:
10.1038/s41467-024-52133-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The simultaneous construction of multiple stereogenic elements in a single step is highly appealing and desirable in the field of asymmetric synthesis. Furthermore, the catalytic enantioselective synthesis of inherently chiral calix[n]arenes with high enantiopurity has long been a challenging endeavor. Herein, we report an enantioselective cobalt-catalyzed C-H activation/annulation for the efficient construction of inherently chiral calix[4]arenes bearing multiple C-N axially chiral element. By employing the benzamide tethered calix[4]arene as the substrate, the C-H annulation with alkynes can be successfully accomplished, leading to the generation of multiple stereogenic elements. A wide range of calix[4]arenes and alkynes are found to be well compatible, and exhibit good yields, high enantioselectivity and excellent diastereoselectivity. Notably, the gram-scale reaction, catalytic application, synthetic transformations, and chiral recognition further showcase the potential applications of this protocol.
Collapse