1
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
2
|
Fu YH, Shen GB, Wang K, Zhu XQ. New Insights into the Actual H-Abstraction Activities of Important Oxygen and Nitrogen Free Radicals: Thermodynamics and Kinetics in Acetonitrile. ACS OMEGA 2022; 7:25555-25564. [PMID: 35910187 PMCID: PMC9330089 DOI: 10.1021/acsomega.2c02700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/30/2022] [Indexed: 06/02/2023]
Abstract
The H-abstraction activity of a free radical is a research hotspot and has been extensively studied. In this article, the second-order rate constants of 21 HAT reactions in acetonitrile at 298 K were chosen from several published literature. A kinetic study on the H-abstraction reaction from TEMPOH by a DPPH• radical was carried out. This reaction was researched as an insertion point. By combining this reaction with the 21 HAT reactions in this paper, the thermokinetic parameters of 28 free radicals X and their corresponding antioxidants XH were obtained by the cross-HAT reaction method. The scales of the H-abstraction activities of these 28 oxygen and nitrogen free radicals were determined by using the thermokinetic parameters ΔG ≠o(X). Applications of the thermokinetic parameter ΔG ≠o(X) in assessing the actual H-abstraction activity of a free radical quantitatively and selecting a suitable free radical in scientific research and chemical production were discussed. Predictions of the rate constants by using thermokinetic parameters of reactants were researched, and the reliabilities of the predicted activation free energies of XH/Y reactions were also examined.
Collapse
Affiliation(s)
- Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Kai Wang
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- Department
of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Zhu K, Jia H, Jiang W, Sun Y, Zhang C, Liu Z, Wang T, Guo X, Zhu L. The First Observation of the Formation of Persistent Aminoxyl Radicals and Reactive Nitrogen Species on Photoirradiated Nitrogen-Containing Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:779-789. [PMID: 34964354 DOI: 10.1021/acs.est.1c05650] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitrogen-containing microplastics (N-MPs) are widely present in the atmosphere, but their potential health risks have been overlooked. In this study, the formation of persistent aminoxyl radicals (PAORs) and reactive nitrogen species (RNSs) on the N-MPs under light irradiation was investigated. After photoaging, an anisotropic triplet with the g-factor of ∼2.0044, corresponding to PAORs, was detected on the nonaromatic polyamide (PA) rather than amino resin (AmR) by electron paramagnetic resonance and confirmed by density functional theory calculations. The generated amine oxide portions on the photoaged PA were identified using X-ray photoelectron spectroscopy and Raman spectroscopy, which were considered to be the main structural basis/precursors of a PAOR. Surprisingly, RNSs were also observed on the irradiated PA. The generated ·NO due to the aphotolysis of nitrone groups simultaneously reacted with peroxide radicals and O2·- to yield ·NO2 and peroxynitrite, respectively, which were responsible for peroxyacyl nitrates (PAN) and CO3·- formation. Besides, a significantly higher oxidative potential and reductive potential were observed for the aged PA than AmR, which is assigned to the abundant RNSs, organic hydroperoxides and PANs, and a strong ability to transfer electrons from PAOR, respectively. This work provides important information for the potential risks of airborne N-MPs and may serve as a guide for future toxicological assessments.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Wenjun Jiang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Yajiao Sun
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Ze Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Tiecheng Wang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, P. R. China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
The Adductomics of Isolevuglandins: Oxidation of IsoLG Pyrrole Intermediates Generates Pyrrole⁻Pyrrole Crosslinks and Lactams. High Throughput 2019; 8:ht8020012. [PMID: 31083423 PMCID: PMC6630840 DOI: 10.3390/ht8020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Isoprostane endoperoxides generated by free radical-induced oxidation of arachidonates, and prostaglandin endoperoxides generated through enzymatic cyclooxygenation of arachidonate, rearrange nonenzymatically to isoprostanes and a family of stereo and structurally isomeric γ-ketoaldehyde seco-isoprostanes, collectively known as isolevuglandins (isoLGs). IsoLGs are stealthy toxins, and free isoLGs are not detected in vivo. Rather, covalent adducts are found to incorporate lysyl ε-amino residues of proteins or ethanolamino residues of phospholipids. In vitro studies have revealed that adduction occurs within seconds and is uniquely prone to cause protein–protein crosslinks. IsoLGs accelerate the formation of the type of amyloid beta oligomers that have been associated with neurotoxicity. Under air, isoLG-derived pyrroles generated initially are readily oxidized to lactams and undergo rapid oxidative coupling to pyrrole–pyrrole crosslinked dimers, and to more highly oxygenated derivatives of those dimers. We have now found that pure isoLG-derived pyrroles, which can be generated under anoxic conditions, do not readily undergo oxidative coupling. Rather, dimer formation only occurs after an induction period by an autocatalytic oxidative coupling. The stable free-radical TEMPO abolishes the induction period, catalyzing rapid oxidative coupling. The amine N-oxide TMAO is similarly effective in catalyzing the oxidative coupling of isoLG pyrroles. N-acetylcysteine abolishes the generation of pyrrole–pyrrole crosslinks. Instead pyrrole-cysteine adducts are produced. Two unified single-electron transfer mechanisms are proposed for crosslink and pyrrole-cysteine adduct formation from isoLG-pyrroles, as well as for their oxidation to lactams and hydroxylactams.
Collapse
|
5
|
Abstract
The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without overoxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo are unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system into its unsaturated counterpart could open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This 'portable desaturase' (Tz(o)Cl) is a bench-stable, commercial entity (Aldrich, catalogue number L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group.
Collapse
|