1
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
2
|
Li H, Ji K, Liu P, Geng Y, Gong J, Zhang C, Ding Z, Xu Z, Shi J. Chitotriose Enhanced Antitumor Activity of Doxorubicin through Egr1 Upregulation in MDA-MB-231 Cells. Mar Drugs 2023; 22:26. [PMID: 38248651 PMCID: PMC10821154 DOI: 10.3390/md22010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Dietary supplementation is proposed as a strategy to reduce the side effects of conventional chemotherapy for triple-negative breast cancer (TNBC). Chitosan oligosaccharides (COS), a functional carbohydrate, have been identified to potentially inhibit cancer cell proliferation. However, a detailed investigation is required to fully understand its exact influence, particularly in terms of COS composition. The antitumor activities of COS oligomers and its monomer of glucosamine, when combined with doxorubicin separately, were evaluated in MDA-MB-231 cells. Chitotriose was identified to have the most significant synergistic effect. Preincubation with chitotriose was observed to promote the entry of doxorubicin into the cell nuclei and induce morphological changes in the cells. Mechanism analysis at the transcriptional level revealed that the early growth response 1 (Egr1) gene was a key regulator in enhancing the suppressive effect. This gene was found to modulate the activity of its downstream gene, growth arrest, and DNA damage-inducible alpha (Gadd45a). The role of Egr1 was confirmed through a small interfering RNA test and function assay. These findings provide insight into the effect and underlying mechanism of chitotriose supplementation for TNBC therapy.
Collapse
Affiliation(s)
- Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (H.L.); (K.J.); (Y.G.); (J.G.)
| | - Ke Ji
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (H.L.); (K.J.); (Y.G.); (J.G.)
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (H.L.); (K.J.); (Y.G.); (J.G.)
| | - Jinsong Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (H.L.); (K.J.); (Y.G.); (J.G.)
| | - Chao Zhang
- Yangzhou Rixing Bio-Tech Co., Ltd., Gaoyou 225601, China; (C.Z.); (Z.D.)
| | - Zhenzhong Ding
- Yangzhou Rixing Bio-Tech Co., Ltd., Gaoyou 225601, China; (C.Z.); (Z.D.)
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China;
| | - Jinsong Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; (H.L.); (K.J.); (Y.G.); (J.G.)
| |
Collapse
|
3
|
Mittal A, Singh A, Buatong J, Saetang J, Benjakul S. Chitooligosaccharide and Its Derivatives: Potential Candidates as Food Additives and Bioactive Components. Foods 2023; 12:3854. [PMID: 37893747 PMCID: PMC10606384 DOI: 10.3390/foods12203854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Chitooligosaccharide (CHOS), a depolymerized chitosan, can be prepared via physical, chemical, and enzymatic hydrolysis, or a combination of these techniques. The superior properties of CHOS have attracted attention as alternative additives or bioactive compounds for various food and biomedical applications. To increase the bioactivities of a CHOS, its derivatives have been prepared via different methods and were characterized using various analytical methods including FTIR and NMR spectroscopy. CHOS derivatives such as carboxylated CHOS, quaternized CHOS, and others showed their potential as potent anti-inflammatory, anti-obesity, neuroprotective, and anti-cancer agents, which could further be used for human health benefits. Moreover, enhanced antibacterial and antioxidant bioactivities, especially for a CHOS-polyphenol conjugate, could play a profound role in shelf-life extension and the safety assurance of perishable foods via the inhibition of spoilage microorganisms and pathogens and lipid oxidation. Also, the effectiveness of CHOS derivatives for shelf-life extension can be augmented when used in combination with other preservative technologies. Therefore, this review provides an overview of the production of a CHOS and its derivatives, as well as their potential applications in food as either additives or nutraceuticals. Furthermore, it revisits recent advancements in translational research and in vivo studies on CHOS and its derivatives in the medical-related field.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirayu Buatong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (A.M.); (A.S.); (J.B.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Thomas R, Fukamizo T, Suginta W. Green-Chemical Strategies for Production of Tailor-Made Chitooligosaccharides with Enhanced Biological Activities. Molecules 2023; 28:6591. [PMID: 37764367 PMCID: PMC10536575 DOI: 10.3390/molecules28186591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Chitooligosaccharides (COSs) are b-1,4-linked homo-oligosaccharides of N-acetylglucosamine (GlcNAc) or glucosamine (GlcN), and also include hetero-oligosaccharides composed of GlcNAc and GlcN. These sugars are of practical importance because of their various biological activities, such as antimicrobial, anti-inflammatory, antioxidant and antitumor activities, as well as triggering the innate immunity in plants. The reported data on bioactivities of COSs used to contain some uncertainties or contradictions, because the experiments were conducted with poorly characterized COS mixtures. Recently, COSs have been satisfactorily characterized with respect to their structures, especially the degree of polymerization (DP) and degree of N-acetylation (DA); thus, the structure-bioactivity relationship of COSs has become more unambiguous. To date, various green-chemical strategies involving enzymatic synthesis of COSs with designed sequences and desired biological activities have been developed. The enzymatic strategies could involve transglycosylation or glycosynthase reactions using reducing end-activated sugars as the donor substrates and chitinase/chitosanase and their mutants as the biocatalysts. Site-specific chitin deacetylases were also proposed to be applicable for this purpose. Furthermore, to improve the yields of the COS products, metabolic engineering techniques could be applied. The above-mentioned approaches will provide the opportunity to produce tailor-made COSs, leading to the enhanced utilization of chitin biomass.
Collapse
Affiliation(s)
- Reeba Thomas
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payunai, Wangchan District, Rayong 21210, Thailand; (R.T.); (T.F.)
| |
Collapse
|
5
|
Novel Chitosan Derivatives and Their Multifaceted Biological Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan is a rather attractive material, especially because of its bio-origins as well as generation from exoskeletal waste. As the mantle has been effectively transferred from chitin to chitosan, so has it been extrapolated to in-house synthesized novel chitosan derivatives. This review comprehensively lists the available novel chitosan derivatives (ChDs) and summarizes their biological applications. The fact that chitosan derivatives do comprise multifaceted biological applications is attested by the voluminous reports on their varied contributions. However, this review points out to the fact that there has been selective focus on bio functions such as antifungal, antioxidant, antibacterial, whereas other biomedical applications and antiviral applications remain relatively less explored. With their current functionality record, there is definitely no doubt that the plethora of synthesized ChDs will have a profound impact on the unexplored biological aspects. This review points out this lacuna as room for future exploration.
Collapse
|
6
|
The Microstructure, Antibacterial and Antitumor Activities of Chitosan Oligosaccharides and Derivatives. Mar Drugs 2022; 20:md20010069. [PMID: 35049924 PMCID: PMC8781119 DOI: 10.3390/md20010069] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan obtained from abundant marine resources has been proven to have a variety of biological activities. However, due to its poor water solubility, chitosan application is limited, and the degradation products of chitosan oligosaccharides are better than chitosan regarding performance. Chitosan oligosaccharides have two kinds of active groups, amino and hydroxyl groups, which can form a variety of derivatives, and the properties of these derivatives can be further improved. In this review, the key structures of chitosan oligosaccharides and recent studies on chitosan oligosaccharide derivatives, including their synthesis methods, are described. Finally, the antimicrobial and antitumor applications of chitosan oligosaccharides and their derivatives are discussed.
Collapse
|
7
|
Mallakuntla MK, Penugurti V, Manavathi B, Podile AR. Chitooligosaccharides induce apoptosis in human breast cancer cells. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Abstract
Cancer is one of the major causes of death worldwide. Chemotherapeutic drugs have become a popular choice as anticancer agents. Despite the therapeutic benefits of chemotherapeutic drugs, patients often experience side effects and drug resistance. Biopolymers could be used to overcome some of the limitations of chemotherapeutic drugs, as well as be used either as anticancer agents or drug delivery vehicles. Chitosan is a biocompatible polymer derived from chitin. Chitosan, chitosan derivatives, or chitosan nanoparticles have shown their promise as an anticancer agent. Additionally, functionally modified chitosan can be used to deliver nucleic acids, chemotherapeutic drugs, and anticancer agents. More importantly, chitosan-based drug delivery systems improved the efficacy, potency, cytotoxicity, or biocompatibility of these anticancer agents. In this review, we will investigate the properties of chitosan and chemically tuned chitosan derivatives, and their application in cancer therapy.
Collapse
|
9
|
Zhou J, Wen B, Xie H, Zhang C, Bai Y, Cao H, Che Q, Guo J, Su Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct 2021; 12:926-951. [PMID: 33434251 DOI: 10.1039/d0fo02768e] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan oligosaccharides (COSs) are widely used biopolymers that have been studied in relation to a variety of abnormal biological activities in the food and biomedical fields. Since different COS preparation technologies produce COS compounds with different structural characteristics, it has not yet been possible to determine whether one or more chito-oligomers are primarily responsible for the bioactivity of COSs. The inherent biocompatibility, mucosal adhesion and nontoxic nature of COSs are well documented, as is the fact that they are readily absorbed from the intestinal tract, but their structure-activity relationship requires further investigation. This review summarizes the methods used for COS preparation, and the research findings with regard to the antioxidant, anti-inflammatory, anti-obesity, bacteriostatic and antitumour activity of COSs with different structural characteristics. The correlation between the molecular structure and bioactivities of COSs is described, and new insights into their structure-activity relationship are provided.
Collapse
Affiliation(s)
- Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China. and Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou (510310), China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan (528458), China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou (510663), China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou (510006), China.
| |
Collapse
|
10
|
Zhai X, Li C, Ren D, Wang J, Ma C, Abd El-Aty AM. The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: A comprehensive review. Carbohydr Polym 2021; 266:118132. [PMID: 34044948 DOI: 10.1016/j.carbpol.2021.118132] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Chitooligosaccharides (COS) are the degraded products of chitin or chitosan. COS is water-soluble, non-cytotoxic to organisms, readily absorbed through the intestine, and eliminated primarily through the kidneys. COS possess a wide range of biological activities, including immunomodulation, cholesterol-lowering, and antitumor activity. Although work on COS goes back at least forty years, several aspects remain unclear. This review narrates the recent developments in COS antitumor activities, while paying considerable attention to the impacts of physicochemical properties (such as molecular weight and degrees of deacetylation) and chemical modifications both in vitro and in vivo. COS derivatives not only improve some physicochemical properties, but also expand the range of applications in drug and gene delivery. COS (itself or as a drug carrier) can inhibit tumor cell proliferation and metastasis, which might be attributed to its ability to stimulate the immune response along with its anti-angiogenic activity. Further, an attempt has been made to report limitations and future research. The potential health benefits of COS and its derivatives against cancer may offer a new insight on their applications in food and medical fields.
Collapse
Affiliation(s)
- Xingchen Zhai
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China.
| | - Chaonan Li
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China.
| | - Chao Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
11
|
Deng JJ, Li ZQ, Mo ZQ, Xu S, Mao HH, Shi D, Li ZW, Dan XM, Luo XC. Immunomodulatory Effects of N-Acetyl Chitooligosaccharides on RAW264.7 Macrophages. Mar Drugs 2020; 18:md18080421. [PMID: 32806493 PMCID: PMC7460392 DOI: 10.3390/md18080421] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The ongoing development of new production methods may lead to the commercialization of N-acetyl chitooligosaccharides (NACOS), such as chitosan oligosaccharides (COS). The bioactivity of NACOS, although not well detailed, differs from that of COS, as they have more acetyl groups than COS. We used two enzymatically produced NACOS with different molecular compositions and six NACOS (NACOS1–6) with a single degree of polymerization to verify their immunomodulatory effects on the RAW264.7 macrophage cell line. We aimed to identify any differences between COS and various NACOS with a single degree of polymerization. The results showed that NACOS had similar immune enhancement effects on RAW264.7 cells as COS, including the generation of reactive oxygen species (ROS), phagocytotic activity, and the production of pro-inflammation cytokines (IL-1β, IL-6, and TNF-α). However, unlike COS and lipopolysaccharide (LPS), NACOS1 and NACOS6 significantly inhibited nitric oxide (NO) production. Besides their immune enhancement effects, NACOS also significantly inhibited the LPS-induced RAW264.7 inflammatory response with some differences between various polymerization degrees. We confirmed that the NF-κB pathway is associated with the immunomodulatory effects of NACOS on RAW264.7 cells. This study could inform the application of NACOS with varying different degrees of polymerization in human health.
Collapse
Affiliation(s)
- Jun-Jin Deng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
- Institute of Animal Sciences, Guangdong Academy of Agricultural Sciences, No. 1 Dafeng Street, Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Zong-Qiu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Ze-Quan Mo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.-Q.M.); (X.-M.D.)
| | - Shun Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - He-Hua Mao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Dan Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Zhi-Wei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.-Q.M.); (X.-M.D.)
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (J.-J.D.); (Z.-Q.L.); (S.X.); (H.-H.M.); (D.S.); (Z.-W.L.)
- Correspondence: ; Tel./Fax: +86-(0)20-3938-0609
| |
Collapse
|
12
|
Kaczmarek MB, Struszczyk-Swita K, Li X, Szczęsna-Antczak M, Daroch M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front Bioeng Biotechnol 2019; 7:243. [PMID: 31612131 PMCID: PMC6776590 DOI: 10.3389/fbioe.2019.00243] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Chitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years. These proteins are already useful tools toward the biotechnological transformation of chitin into chitosan and chitooligosaccharides, especially when a controlled non-degradative and well-defined process is required. This review describes traditional and novel enzymatic methods of modification of chitin and its derivatives. Recent advances in chitin processing, discovery of increasing number of new, well-characterized enzymes and development of genetic engineering methods result in rapid expansion of the field. Enzymatic modification of chitin and chitosan may soon become competitive to conventional conversion methods.
Collapse
Affiliation(s)
- Michal Benedykt Kaczmarek
- Institute of Technical Biochemistry, Lodz University of Technology, Łódź, Poland.,School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
13
|
Liang S, Sun Y, Dai X. A Review of the Preparation, Analysis and Biological Functions of Chitooligosaccharide. Int J Mol Sci 2018; 19:ijms19082197. [PMID: 30060500 PMCID: PMC6121578 DOI: 10.3390/ijms19082197] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Chitooligosaccharide (COS), which is acknowledged for possessing multiple functions, is a kind of low-molecular-weight polymer prepared by degrading chitosan via enzymatic, chemical methods, etc. COS has comprehensive applications in various fields including food, agriculture, pharmacy, clinical therapy, and environmental industries. Besides having excellent properties such as biodegradability, biocompatibility, adsorptive abilities and non-toxicity like chitin and chitosan, COS has better solubility. In addition, COS has strong biological functions including anti-inflammatory, antitumor, immunomodulatory, neuroprotective effects, etc. The present paper has summarized the preparation methods, analytical techniques and biological functions to provide an overall understanding of the application of COS.
Collapse
Affiliation(s)
- Shuang Liang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| | - Yaxuan Sun
- Department of Food Sciences, College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|
14
|
Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184:243-259. [DOI: 10.1016/j.carbpol.2017.12.067] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 01/11/2023]
|
15
|
Access to N-Acetylated Chitohexaose with Well-Defined Degrees of Acetylation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2486515. [PMID: 28656139 PMCID: PMC5474546 DOI: 10.1155/2017/2486515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022]
Abstract
Chitohexaose has attracted wide interest due to its special bioactivities and these potential activities are significantly related to N-acetylation. Herein, six chitohexaose fractions with different degrees of acetylation were prepared by selective N-acetylation and ion-exchange chromatography and further analyzed by ESI/MS. It is revealed that all the six N-acetylated chitohexaoses were of single molecular weight, the molecular weights of which were exactly assigned to 1026.44 Da, 1068.44 Da, 1110.48 Da, 1152.48 Da, 1194.49 Da, and 1236.48 Da, respectively. These results suggested that the six prepared N-acetylated chitohexaoses were N-acetylchitohexaose (D5A1), di-N-acetylchitohexaose (D4A2), tri-N-acetylchitohexaose (D3A3), tetra-N-acetylchitohexaose (D2A4), penta-N-acetylchitohexaose (D1A5), and hexa-N-acetylchitohexaose (A6), respectively, which are of great significance to screen their bioactivities and discover well-defined chitooligosaccharide molecules as potential drugs.
Collapse
|
16
|
Li K, Xing R, Liu S, Li P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr Polym 2016; 139:178-90. [DOI: 10.1016/j.carbpol.2015.12.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
|
17
|
|